Но, с другой стороны, атомы водорода в бензоле очень легко могут быть замещены на другие группы (мы еще поговорим об этом). Эта способность — одна из основных в комплексе свойств бензола, которые называются
Далее. Для каждого двузамещенного бензола, судя по этой формуле, должны существовать два изомера. Например, для
На самом деле никому не удавалось выделить два изомера
Обратим внимание на этот гипотетический процесс. Мы еще поговорим о нем в дальнейшем
Пришлось создателю теории строения бензола вносить "уточнения" в свою формулу. Кекуле предположил, что двойные связи не закреплены в бензоле, а все время перемещаются:
Шестерка электронов
Споры вокруг теории строения бензола прекратились всего несколько десятилетий назад. Каковы же современные представления об электронном строении бензола? Каждый атом углерода в бензоле находится в
Если формула Кекуле верна, то расстояния в молекуле бензола между двумя соседними углеродами должны быть разными: 0,154 нм между атомами, у которых
Но исследование бензола физическими методами показало, что все расстояния в молекуле строго одинаковы и длина связи С-С равна 0,140 нм, т. е" среднему значению между длинами простой и двойной связи. Логично предположить, что каждая электронная восьмерка-орбиталь перекрывается одинаково и одновременно с такими же восьмерками двух соседей.
Итак, для каждого углеродного атома бензола оба соседа — и справа, и слева — совершенно равноценны. Больше того, современные физические методы позволили установить, что все шесть атомов углерода постоянно обмениваются своими π-электронами, так что по бензольному шестиугольнику может циркулировать кольцевой ток.
В этой таблице обобщаются наши знания о реальном бензоле и гипотетическом циклогексатриене
Мул: лошадь <-> осел
Казалось бы все ясно: формула Кекуле неверна, надо ее забыть, заменить другой, более точно передающей истинное положение вещей, например, шестиугольником со вписанной в него окружностью (эта, окружность символизирует шестерку π-электронов, усредненных между всеми атомами углерода).
Но химики не спешат расставаться с формулой Кекуле: она удобна и привычна и для многих целей вполне удовлетворительна. Главное только — помнить, что скрывается за этой формулой.
В 30-е годы американский ученый Лайнус Полинг нашел новое применение привычной, но неточной формуле. Формула Кекуле была использована в квантовохимических расчетах молекулы бензола.
Известно, что электрон обладает одновременно свойствами частицы и волны. Поведение электрона в квантовой механике описывается так называемой волновой функцией φ (пси). Для того чтобы определить вид этой функции, необходимо решить уравнение Шредингера, которое показывает зависимость изменения φ от силового поля, в котором движется электрон. Это уравнение имеет достаточно сложный вид:
где
В этом уравнении ∇2
— это оператор, который означает дифференцирование функции φ, т. е.Сложно? Еще сложнее решение этого уравнения. Но пусть не пугается читатель, не знакомый с высшей математикой — мы не будем решать уравнения Шредингера. В большинстве случаев (мы имеем в виду многоэлектронные молекулы) эта задача непосильна даже для электронно-вычислительных машин. Но ученые находят приближенные методы, которые позволяют все-таки на основе расчета узнать многое о поведении электронов в молекуле. Один из таких методов и предложил Полинг.
Полинг представляет бензол в виде двух формул Кекуле (А и В):