На рис. 5.1 изображен турнир восьми команд. Если предположить, что более сильная команда всегда выигрывает (т. е. что не бывает срывов), лучшая команда, очевидно, завоюет первое место. Однако второй участник финальной игры может занимать в общей табели о рангах лишь место 2n−1 + 1 при условии, что все более сильные команды оказались в одной группе с победителем. Победитель по мере своего продвижения выведет из розыгрыша хорошие команды, и слабой команде достанутся совсем никудышные соперники. Избежать подобной ситуации можно несколькими способами. Во-первых, команды (в дальнейшем будем называть их
Круг 1 | Победители | Круг 2 | Победители | Круг 3 | Победители | Итоговые |
Пары | Пары | Пары | результаты | |||
1 | 1 | 1 | 1 | 1 | 1 | 1 (3-0) |
8 | 2 | 3 | 3 (2-1) | |||
2 | 2 | 3 | 3 | 5 | 2 | 2 (2-1) |
7 | 5 | 2 | 4 (2-1) | |||
3 | 3 | 8 | 8 | 4 | 4 | 5 (1-2) |
6 | 7 | (Срыв) | 8 | 6 (1-2) | ||
4 | 5 | 6 | 4 | 6 | 6 | 8 (1-2) |
5 | (Срыв) | 4 | 7 | 7 (0-3) | ||
Этот турнир недостаточно велик, чтобы показать достоинства швейцарской системы. |
Оказавшись между двумя крайностями, выберем компромиссное решение — швейцарскую систему. В первом круге соперник, «посеянный» первым, встречается с последним, второй — с предпоследним и т. д. После каждого круга соперники упорядочиваются в соответствии с набранными очками. Внутри каждой группы (с равным количеством очков) соперники упорядочиваются по среднему числу очков у побежденных ими противников (тем самым ничья не учитывается). В следующем круге соперник, стоящий в описанной классификации на первом месте, встречается с соперником, занимающим наиболее высокое место из тех, с кем он еще не играл. Остальные пары определяются аналогичным образом: соперники должны иметь почти равное количество очков, причем повторные встречи не допускаются. В табл. 5.1 показан возможный трехкруговой турнир по швейцарской системе с восемью участниками. Крупный шахматный деятель Харкнесс утверждает, что турнир по швейцарской системе в
1/2 + (j − i)/2n+1.
Тем самым более сильный соперник побеждает с вероятностью, превышающей половину. Упорядочим соперников в соответствии с набранным в круговом турнире количеством очков. Внутри каждой группы команд с равным количеством очков упорядочим их по среднему числу очков, набранных побежденными ими соперниками. Если и здесь наблюдаются совпадения, соперники упорядочиваются по исходным номерам. В результате получается круговая классификация, которую мы будем считать самой «справедливой»; она используется для оценки других способов организации турниров.