Читаем Этюды о свете полностью

В 1965 году американские радиоинженеры Пендиас и Вильсон налаживали аппаратуру для связи и установили, что на длине волны 7,35 сантиметра нашу планету со всех сторон окружает постоянный радиошум. Температура его оказалась равной 3,1 градуса Кельвина, что совпадало с расчетами теории горячей Вселенной. Космологи получили поддержку своей теории, а авторы открытия — Нобелевскую премию. Впыледствии это излучение, удачно названное нашим ученым Иосифом Шкловским «реликтовым», было обнаружено и на других волнах — 8,2 миллиметра, 20,7 сантиметра, а также 49 сантиметров и 73,5 сантиметра.

Открытие реликтового излучения показало, что межгалактическое пространство заполнено квантами низкой частоты, малой энергии. На одну ядерную частицу приходится миллиард таких квантов. В 1977 году станция «Салют-6» обнаружила субмиллиметровое излучение многих объектов, подтвердившее открытие их американскими исследователями Нейгебауэром и Лейтоном. Вселенная наша насыщена светом. Он — суть ее. И потому вполне оправданно гимном свету звучат слова Иоланты, когда искусством лекаря к ней возвращается зрение:

Чудный дар природы вечной,Дар бесценный и святой,В нем источник бесконечныйНаслажденья красотой.Солнце, небо, звезд сиянье,Море в блеске голубом,Всю природу и созданьяМы лишь в свете познаем.<p>НЕСОВРЕМЕННЫЙ НАУЧНЫЙ УРОВЕНЬ</p>

В книге «Ядерная астрофизика» Фред Хойл сетует: «Всю жизнь мне беспрестанно досаждали рецензенты — эти клопы научного мира». У нас, как известно, такое бывает реже. То денег нет для рецензии, то подходящего рецензента, то смысла.

Работам о свете в этом отношении повезло. В начале 70-х годов им пожелали успеха академики Будкер и Зельдович. А кафедра теоретической физики Московского физико-технического института позже указала на отсутствие размерности энергии у постоянной Планка. Даже редакции «Журнала экспериментальной и теоретической физики», «Писем» в этот журнал и другие возвращали автору десятки вариантов статей с лапидарным отзывом: «Не соответствует современному научному уровню».

Так ведь современному научному уровню не соответствовали в свое время работы Коперника и Галилея, Ньютона и Эйнштейна. Рентгеновские лучи, электрон и радиоактивность выходили за рамки сложившейся к тому времени суммы знаний. Кроме факта излучения, ничего общего с теорией излучений не имели квантовые идеи Планка. Потому-то они и стали неожиданными открытиями, новым знанием, до уровня которого потом подтягивалась наука.

Отказав работам о свете в нужном им уровне, редакторы тем самым приобщили их к выходящим за рамки известного. А это уже хорошо.

Академик Гольданский заметил однажды, что простым смертным можно заниматься деталями науки, но не ее основами. Это действительно так. Тот, кто занимается основами науки, должен быть, по определению, ниспровергателем существующих основ. А это простым смертным недоступно.

Конечно, идея атома энергии не вписывается в 135-летнюю теорию Максвелла, которая считается современным научным уровнем. Зато она хорошо согласуется с опытами и расчетами. Это автор подробно показал в ранее опубликованных работах и в статье о 100-летии квантовой теории в Интернете (http://cust/idl/com/au/rubbo/quantum).

Восемь лет обсуждения этих работ в России, США и Канаде не выявили ни одного аргумента, опровергающего идею энергоатомарной сущности излучений, прерывности энергетических состояний — фундаментальной основы квантовой теории и соответствующего представления микроструктуры излучений. Напротив. Участники дискуссий приводили немало примеров зернистости света, а также возможности решения назревших проблем теории и практики на базе субквантовых характеристик.

Наряду с этим отмечалась трудность их восприятия и отхода от привычных — электромагнитных. Представить себе трехметровый фотон оранжевого света, из которого выделен оптический эталон метра, смогли далеко не все участники обсуждений. Хотя их воображение отказывалось нарисовать такой фотон и в образе элементарной частицы, которой принято его считать.

В нынешних теориях света — квантовой и волновой — есть много общего с энергоатомарным его представлением. В рамках теорий динамических аналогий, подобия и математического моделирования сочетание их бывает очень полезным. Важно лишь отойти от явных противоречий с опытом, которые тормозят развитие физики и вводят в заблуждение, как это не раз уже происходило.

Идея Пуанкаре, Эренфеста, Иоффе и Планка — идея атома энергии излучений — вряд ли долго будет лишь альтернативой идее эфемерного и загадочного электромагнетизма Максвелла.

Его замечательные уравнения сыграли свою роль в науке и заслужили почетное место в ее истории. Однако если мы хотим понять природу света, то объективный носитель величины постоянной Планка может этому помочь.

Перейти на страницу:

Похожие книги

Квантовая механика и интегралы по траекториям
Квантовая механика и интегралы по траекториям

Оригинальный курс квантовой механики, написанный на основе лекций известного американского физика, лауреата Нобелевской премии Р. П. Фейнмана. От всех существующих изложений данная книга отличается как исходными посылками, так и математическим аппаратом: в качестве отправного пункта принимается не уравнение Шрёдингера для волновой функции, а представление о бесконечномерном интегрировании по траекториям. Это позволяет наглядным и естественным образом связать квантовое и классическое описания движения. Формализм новой теории подробно развит и проиллюстрирован на примере ряда традиционных квантовых задач (гармонический осциллятор, движение частицы в электромагнитном поле и др.). Книга представляет интерес для широкого круга физиков — научных работников, инженеров, лекторов, преподавателей, аспирантов. Она может служить дополнительным пособием по курсу квантовой механики для студентов физических специальностей.

Ричард Филлипс Фейнман , Ю. Л. Обухов

Физика / Образование и наука