Читаем Этюды о Вселенной полностью

Применение идей Бора при рассмотрении более сложных атомов позволило надежно обосновать периодическую систему Менделеева и выяснить природу химической связи. Столь же важным оказалось открытие того, что дуализм волна – частица универсален и присущ всякой материи. Несколько замечаний, высказанных Эйнштейном на эту тему, позволили Шредингеру вывести знаменитое уравнение, описывающее движение этих волн материи.

Остается вопросом истории, какие же причины привели Эйнштейна (да и Шредингера) в стан противников новой физики, поднявшейся из пепла старой, в частности, именно благодаря им. Разумеется, и до сих пор существуют сомнения относительно правильной интерпретации квантовой механики. Большинство физиков придерживается интерпретации так называемой Копенгагенской школы. Все, включая самого Эйнштейна, признали выводы и формулы, которые следуют из этой интерпретации. Тем не менее вплоть до своей смерти в 1955 г. Эйнштейн считал квантовую механику несовершенной теорией, неопределенность которой представляет собой серьезный недостаток, частично закрывающий от нас истину.

3. Соотношение неопределенности

Одним из популярнейших персонажей комиксов 30-х годов, вне сомнения, был Брик Брадфорд (в итальянском варианте – Джорджо Вентура). в одном из своих наиболее известных похождений он, уменьшенный дьявольской машиной, внедряется в монету стоимостью один цент, чтобы подробно исследовать атом меди. Атом представлен в виде планетарной системы в миниатюре; вокруг Солнца вращаются планеты, населенные странными существами. Рассказик в картинках несомненно был навеян представлением об атоме Бора: вокруг ядра, исполняющего роль Солнца, вращаются электроны-планеты. на этом все сходство практически кончается. Ядро на самом деле не освещает систему (а если и освещает, то излучая γ-лучи), электроны в действительности все одинаковы и отталкиваются друг от друга при сближении; и что еще хуже, орбиты электронов практически заполняют весь атом, в то время как орбиты планет лежат в одной плоскости (называемой эклиптикой).

Представление о планетарной системе все же имеет несомненные заслуги в деле создания зрительных образов и популяризации чрезвычайно сложных понятий; временами бывает удобно воспользоваться несовершенными образами в качестве первого приближения, чтобы передать суть дела. с точки зрения дидактики открытие квантовой механики ухудшило положение, хотя и позволило нам глубже постичь некоторые странные свойства атомов.

Корпускулярная природа света

В своей первой работе 1905 г. Альберт Эйнштейн привлек корпускулярную теорию света для объяснения аномалий, наблюдавшихся в фотоэлектрическом эффекте: согласно этой теории, свет распространяется в виде пакетов («квантов» света, или «фотонов») вполне определенной энергии, пропорциональной частоте в соответствии с законом Планка.

В известном смысле лампа представляет собой «пулемет, стреляющий фотонами»; как мы уже говорили, энергия этих фотонов может меняться к зависит от цвета света; энергия синих квантов вдвое превышает энергию красных; кванты радиоволн исключительно маленькие, в то время как кванты γ-излучения громадны (на атомном уровне); в предельном случае космического излучения могли бы существовать кванты с энергией, сравнимой с энергией мяча для гольфа.

Наблюдение электронов

Предположим теперь, что нам захотелось увидеть движение электронов внутри атома так же, как с помощью телескопов мы наблюдаем движение планет. Поскольку ядро само не излучает и электроны не испускают собственного света, пришлось бы осветить атом извне, используя подходящий источник. Длина волны падающего света должна быть сравнимой с размерами наблюдаемых объектов; так, радар, работающий на метровых радиоволнах, не «увидит» мухи; по этой же причине обычный микроскоп не может помочь нам увидеть внутренность атома. Самый мелкий объект, наблюдаемый в обычном видимом свете, имеет размеры порядка тысячной доли миллиметра, а атом примерно в десять тысяч раз меньше; чтобы увидеть в атоме хоть что-нибудь, нужно освещать его рентгеновскими лучами. Кстати, первые успехи в понимании структуры атома были достигнуты как раз тогда, когда физики получили в свое распоряжение источник коротковолнового излучения. Частота увеличивается с уменьшением длины волны, длинные радиоволны (с длиной волны порядка 1 км) имеют низкую частоту (для указанной длины волны она составляет 300000 герц; 1 герц=1 цикл в секунду); частота волн видимого света доходит до 3·1014 герц, что в миллиард раз больше.

Соотношение неопределенности

Перейти на страницу:

Похожие книги

Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука