Так что, помимо высокочувствительных электронных усилителей, для выявления этих ответов приходится использовать и специальную компьютерную технику, которая позволяет сделать, казалось бы, невозможное: электрические ответы мозга, полностью «утонувшие» в массе посторонних шумов, она очищает и выделяет настолько, что эти ответы можно не только обнаружить, но и точно измерить. Основная идея, которая при этом используется, довольно проста. Чтобы выявить ответ мозга на какой-то сигнал, нужно повторить этот сигнал сколько-то раз — иногда достаточно повторить его раз десять, а по рой приходится сделать сто или тысячу повторений. При этом компьютер должен точно «знать», в какие именно моменты времени подаются звуковые сигналы. Компьютер анализирует электрические токи мозга и сравнивает их с моментами подачи звуковых сигналов. Если какие-то колебания электрического напряжения регулярно появляются каждый раз через определенный интервал времени после очередного звукового сигнала, значит, этот всплеск напряжения не случаен, это — ответ мозга на звук. А те колебания напряжения, которые возникают нерегулярно и вне связи со звуковыми сигналами, очевидно, никакого отношения к реакции мозга на звук не имеют, они должны быть отсеяны. Так, фрагмент за фрагментом анализируя электрические потенциалы после повторяющихся звуковых сигналов, компьютер ре конструирует истинную форму электрического ответа мозга на звук. Результат может быть весьма впечатляющим. Из совершенно хаотических и беспорядочных колебаний электрического напряжения, в которых совершенно невозможно рассмотреть хоть что-нибудь осмысленное, хоть какую-нибудь связь со звуковым сигналом, компьютер выделяет четкий электрический ответ, в котором несколько всплесков электрического напряжения отражают ответы нескольких отделов мозга на звук.
Иногда, правда, и этого оказывается недостаточно когда ответы мозга на звук очень уж слабы, малы по величине возникающих электрических сигналов, например тогда, когда нужно уловить ответы на очень слабые звуковые сигналы. В этих случаях даже описанная процедура выделения ответа из шума может не дать ясной картины: то ли есть едва заметный ответ, то ли нет. Тогда приходится задавать компьютеру дополнительную, более сложную задачу: в получившейся не очень вразумительной картине электрических потенциалов, содержащей ответ мозга и посторонние шумы, отыскать по специальной программе те небольшие колебания, форма которых характерна именно для ответов мозга. Таким способом можно уловить ответы совсем слабенькие.
Однажды я сам даже удивился, насколько чувствительным может быть такой метод. Нужно было зарегистрировать ответы мозга дельфина на очень слабые звуковые сигналы, да притом еще, когда дельфин находился не на поверхности воды, а под водой. А морская вода хороший проводник электричества, поэтому для электрических токов мозга, достигающих поверхности тела, она создает там нечто вроде короткого замыкания — разницы в электрических потенциалах на разных точках тела почти нет. Когда использовали всю возможную технику для выделения ответов мозга из шумов, то оказалось, что можно уловить ответы примерно в одну
К этим электродам приложим такое же напряжение, которое дает обычная батарейка, — это немного больше одного вольта. И предположим, что это напряжение равномерно распределилось бы по всему расстоянию примерно в 10 тысяч километров (на самом деле напряжение не распределится равномерно, но для иллюстрации можно предположить, что это именно так; литературный жанр допускает такую вольность, ведь и подключать батарейку к противоположным берегам океана никто не собирается). Так вот, если бы напряжение в один вольт равномерно распределилось бы по всей ширине океана, то у нашего дельфина, болтающегося как раз посредине этого океана, перепад напряжения между точками тела, к которым приложены электроды, было бы
Так что метод регистрации электрических сигналов мозга — очень чувствительный способ, от него не скроется никакой, даже самый слабенький ответ мозга на звук. Если уж ответ возник, его можно надежно обнаружить.