В США в настоящее время широко распространен новый тип калейдоскопа, так называемый телейдоскоп. Вместо цветных стекляшек на его торцах укреплены увеличивающие линзы, которые превращают этот прибор также и в телескоп. Любой вид, наблюдаемый в телейдоскопе, отражается в зеркалах, установленных под углом 180°/4 = 45°[5]. В этом случае получается октагональный рисунок с осью симметрии восьмого порядка. Любопытный трюк, связанный с проблемой правого и левого, можно показать с помощью двух (или больше) пар обычных игральных костей. Если вы сложите три кубика, как показано на рис. 15, и покроете эту колонку монетой, то, осматривая эту колонку с четырех сторон, можно увидеть четыре грани каждого кубика (две грани невидимы). Можете ли вы правильно назвать показание верхней грани каждой игральной кости, изображенной на рис. 15? Поскольку сумма чисел на всех противоположных гранях равна семи, то легко определить, что для нижнего кубика это 6 или 1, для среднего 4 или 3, а для верхнего 5 или 2. Можете ли вы сказать, какое из чисел каждой пары является правильным ответом на вопрос?
Решение этой задачи основывается на том, что грани игральных костей можно занумеровать только двумя способами при условии, что сумма очков на противоположных гранях равна семи. Оба эти способа являются зеркальным отражением друг друга. Если смотреть на кубик, как показано на рис. 16, со стороны граней 1, 2 и 3 (грань 1 сверху), то видно, что числа в порядке возрастания расположены против часовой стрелки. Все игральные кости в настоящее время изготовляются именно так. В прошлые времена в ходу были оба способа. История кубической кости с постоянной суммой очков на противоположных гранях восходит к древнему Египту, где ее изготовляли и в «правой» и в «левой» модификациях.
Так как вы уже знаете, что все современные игральные кости «левые», то назвать верхние цифры кубиков на рис. 15 не составит труда. Посмотрите на две другие грани и попытайтесь представить, где могут находиться единица, двойка и тройка. Немного попрактиковавшись и помня, что сумма очков на противоположных гранях равна семи, а 1, 2 и 3 идут «против часовой стрелки», вы без особого труда решите задачу.
Упражнение 6. Назовите число очков на верхней грани каждого из кубиков на рис. 15.
Обычно и один человек из тысячи не в состоянии правильно угадать верхние грани, когда кубики сложены таким образом[6].
Я видел игроков, которые показывали этот фокус в казино. Кто-нибудь в случайном порядке укладывал столбик из шести или более костей, пока игрок отворачивался. Потом, бросив один только взгляд, он называл все верхние цифры, и их проверяли, снимая кубики по одному. Такое искусство всегда производит впечатление и вызывает споры о том, в каком порядке нумеруются грани игральной кости.
Попробуйте эти фокусы на своих друзьях — они достаточно забавны, и математическая «подкладка» делает их интереснее. А нам предстоит заняться более серьезными вещами. В следующей главе мы рассмотрим роль симметрии отражения в живописи и, как это ни удивительно, в музыке и поэзии.
Симметрия отражения — один из древнейших и самых простых способов создавать изображения, радующие глаз. Примером может служить детский чернильный узор, упомянутый в предыдущей главе. Когда ребенку показывают его впервые, он обычно взвизгивает от восторга, увидев развернутый листок с появившимся на нем симметричным узором, особенно если он сделан не темными чернилами, а разноцветными красками. Почему ребенку кажется, что картинка «красивая»? Ответ очевиден — ему нравится порядок и гармония, появившиеся в случайном узоре. Может быть, причина и в том, что в окружающем мире он также видит много билатерально симметричных вещей? Этого, кроме него, никто не знает, но вполне разумно предположить, что именно билатеральная симметрия в природе, которую ребенок видит столь часто, заставляет его с удовольствием реагировать на такие узоры. Билатеральная симметрия широко встречается в произведениях искусства примитивных цивилизаций и в древней живописи. Она занимала существенное место в древнеегипетском искусстве. Средневековые религиозные картины также часто характеризуются отчетливой билатеральной симметрией.