Есть и другой способ отличить в Лайнландии симметрию от асимметрии. Если фигура симметрична, то у нее всегда есть точка (только одна) в самом центре, которая делит фигуру на две идентичные половинки, причем одна из них есть отражение другой. Такая точка называется
Пусть в Лайнландии живут только три взрослых одномерца — А, Б и В, причем все они «смотрят» на восток. Если мы получим зеркально обращенную картину одного из них, скажем среднего, то все трое мгновенно заметят перемену. Теперь А и Б «глядят друг на друга», а Б и В «повернуты спинами» один к другому. Но если вся прямая окажется зеркально отраженной, то есть вся «вселенная» одномерцев, то сами они о происшедшей перемене не смогут узнать. В действительности для них просто не имеет смысла говорить о какой-либо перемене. Мы знаем, что направление линии изменилось на обратное, но знаем потому, что живем в 3-пространстве и можем наблюдать положение Лайнландии по отношению к внешнему миру. Но одномерцы не могут представить себе пространство размерности большей чем единица. Они знают только свой собственный мирок, ту единственную прямую, на которой живут. С их точки зрения, никакого изменения не произошло. Только в том случае, когда операции зеркального отражения подвергается какая-то
Во Флатландии, в 2-пространстве планиметрии, все обстоит интереснее, но в отношении зеркальной симметрии предметы ведут себя практически так же, как в Лайнландии. На рис. 5 наш художник дал стилизованное изображение асимметричного двумерца и его отражения в вертикальном зеркале. (Оно изображено объемно, в 3-пространстве, но зеркало двумерца — это всего лишь прямая линия, которую он видит перед собой.) Совместить двумерца с зеркальным изображением невозможно. Если бы мы могли его взять с плоскости, как бумажного солдатика, перевернуть и снова положить в перевернутом виде, то все это можно было бы произвести в 3-пространстве, а не в 2-пространстве Флатландии. Что же произойдет, если держать зеркало над двумерцем или под ним, как показано на рис. 6? В этом случае поменяются местами верх и низ, потому что зеркало перпендикулярно вертикальной оси. Но изображение в зеркале получится таким же, как и прежде; изменится только его положение на плоскости. Мы можем взять любое из зеркальных изображений на рис. 6 и, перевернув, совместить их точка в точку с зеркальным изображением на рис. 5. Где именно помещено зеркало — не имеет ни малейшего значения, так как отражение асимметричного двумерца всегда получается одинаковым.
Нетрудно изобразить разные геометрические фигуры Флатландии, которые являются симметричными и не меняются при отражении в зеркале. Квадраты, окружности, эллипсы, равносторонние и равнобедренные треугольники, значки карточных мастей — бубновой, червонной, пиковой и трефовой — все они при отражении остаются неизменными. В Лайнландии, как мы уже знаем, у каждой симметричной фигуры есть точка, которая делит фигуру на зеркальные половинки. С симметричными фигурами Флатландии то же самое делает
Любая плоская фигура, обладающая