Читаем Этот «цифровой» физический мир полностью

И ещё: в отличие от модели Комптона, которая требует наличия выбиваемых из атомов «электронов отдачи», по нашей модели, никаких «электронов отдачи» не существует. А ведь был проведён целый ряд экспериментов [Ш3,Х1,К2], призванных подкрепить шаткие представления Комптона и проиллюстрировать разлёт продуктов комптоновского рассеяния – при котором рассеянный квант и «электрон отдачи» вылетают из атома одновременно и разлетаются под «правильными» углами. В работе [Г5] дан критический обзор подобных экспериментов, и показана их полная бездоказательность. Их общим недостатком было отсутствие доказательств того, что исследовалось именно комптоновское рассеяние – измерением комптоновских сдвигов здесь никто себя не утруждал. Впрочем, в некоторых «подтверждающих» опытах использовали в качестве первичного излучения гамма-кванты [Х1,К2], у которых измерять комптоновские сдвиги было просто нечем [Г5]. Так, Крэйн, Гартнер и Турин [К2] поместили мишень-рассеиватель в центре камеры Вильсона – для проверки того, что направления вылета электрона отдачи и рассеянного фотона находятся в согласии с законами сохранения энергии-импульса. В качестве первичного излучения использовались жёсткие гамма-лучи – что делало весьма сомнительной саму возможность комптоновского рассеяния. Электроны, которые, судя по их трекам, вылетали из мишени вперёд, считались электронами отдачи – хотя они могли быть электронами внутренней конверсии или фотоэлектронами, выбиваемыми вторичными гамма-квантами. Поскольку гамма-квант не оставляет трека в камере Вильсона, то, для подтверждения «правильного» направления полёта рассеянного гамма-кванта, требовалось получить «правильные» фотографии. А именно: на них, помимо трека «электрона отдачи», требовалось зафиксировать, в «правильном» сегменте камеры, трек ещё одного электрона – якобы, выбитого рассеянным гамма-квантом. Мы говорим «якобы», поскольку никаких гарантий того, что второй электрон выбивался гамма-квантом, вылетавшим из мишени в центре камеры, быть не могло. При таком положении дел, «правильная» пара треков могла получаться лишь в результате маловероятного стечения случайных обстоятельств, на ничтожном проценте фотографий – как это и было в действительности. Обработав только эти «удачные» фотографии, авторы сделали неизбежный, при подобном высоконаучном подходе, вывод о том, что «наблюдаемый угол полёта рассеянного фотона совпадает с вычисленным» [Ш1]. Вот такой лепет нам подсовывают в качестве подпорок заявлений Комптона – насчёт того, что фотон переносит импульс! Добавим, что скептические слова в адрес традиционной интерпретации комптоновских сдвигов, а также критические замечания по поводу экспериментов с «электронами отдачи» высказывались и ранее – например, в исследовании [А1].

Ещё одним эффектом, который, как полагают, доказывает перенос импульса гамма-квантом, является эффект Мёссбауэра. До открытия Мёссбауэра, наблюдение резонансного ядерного поглощения было затруднено – как считалось, из-за эффекта отдачи: гамма-квант, якобы, передаёт часть своего импульса как излучающему его ядру, так и поглощающему, отчего их совпадающие невозмущённые линии «разъезжаются» из-за эффекта Допплера. Это объяснение – недоразумение какое-то. Допплеровский сдвиг линии излучателя имеет место, когда соответствующая скорость у излучателя уже имеется. В рассматриваемом же случае эта скорость приобретается в результате отдачи, т.е. после того, как излучение гамма-кванта уже произошло. Аналогично, у ядра-поглотителя допплеровский сдвиг линии, из-за эффекта отдачи, мог бы появиться лишь после того, как уже произошло поглощение. Ну, никак не мог эффект отдачи портить резонансное ядерное поглощение! Но нам предъявляют факты: при сближении излучателя и поглотителя, вероятность этого поглощения увеличивалась. Казалось бы, здесь происходила допплеровская компенсация эффекта отдачи. И, когда Мёссбауэр обнаружил резонансное поглощение при отсутствии допплеровской компенсации, а при условиях, когда ядра-излучатели и ядра-поглотители входили в состав кристаллических структур, находившихся при достаточно низкой температуре – был сделан вывод о том, что здесь отдача от гамма-кванта воспринимается не одиночным ядром, а всем кристаллом в целом, становясь при этом, практически, нулевой.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже