Читаем Этот «цифровой» физический мир полностью

У многоэлектронных атомов, все атомарные связки «протон-электрон» удерживаются с помощью разных частот атомных прерываний – что даёт, соответственно, разные энергии связи и разные расстояния rат электрона от ядра. Известно, что при последовательном отрывании электронов от атома, дающем всё более высокие степени его ионизации, энергия каждого последующего отрывания всегда заметно больше, чем энергия предыдущего [Т1]. Ортодоксы полагают, что это обусловлено тем, что, по мере роста степени ионизации, отрыв очередного электрона затрудняется его взаимодействием с растущим избыточным положительным зарядом ядра. Такое объяснение странным образом игнорирует тот факт, что энергии выбивания тех же самых электронов из нейтрального атома – электронами, ультрафиолетовым и рентгеновским излучениями – совпадают с энергиями последовательных ионизаций. Это означает, что энергии последовательных ионизаций представляют собой в чистом виде энергии связи соответствующих электронов, и для определения их расстояния от центра атома можно использовать формулу (4.9.1). Кстати, экспериментальные атомные радиусы [Т1] практически не растут по мере роста атомного номера - и, значит, наращивание электронных оболочек происходит «вглубь» атома. Оценивая, с помощью формулы (4.9.1), расстояния от центра атома для самых сильно связанных (~100 кэВ) электронов, можно видеть: популярный тезис о том, что «атом состоит в основном из пустоты», не всегда справедлив, поскольку, по мере роста атомного номера, в атоме становится довольно-таки тесно. У тяжёлых элементов, самые сильно связанные электроны, из К-оболочки, «сидят» чуть ли не на самом ядре!

Теперь заметим: из формулы (4.9.1) следует, что в возбуждённых стационарных состояниях атомарной связки «протон-электрон», имеющих место при уменьшенных частотах атомных прерываний и соответственно уменьшенных энергиях связи, расстояние rат электрона от ядра больше, чем в основном состоянии. Однако, вывод о том, что, при возбуждении атома, его радиус увеличивается, трудно согласовать с экспериментальными фактами.

Во-первых, если этот вывод был бы справедлив, то он приводил бы, в ряде случаев, к весьма завышенным коэффициентам линейного теплового расширения твёрдых тел – по сравнению с теми значениями, которые обнаруживаются на опыте. Действительно, атом в условиях теплового равновесия имеет среднюю энергию возбуждения, соответствующую максимуму равновесного теплового спектра. При увеличении температуры этот максимум сдвигается, увеличивая среднюю энергию возбуждения атома; оценим соответствующее увеличение атомного радиуса. Из сопоставления потенциалов ионизации и атомных радиусов [Т1] следует, что атомный радиус увеличивается вдвое при уменьшении энергии связи, в среднем, примерно на 9 эВ. А, согласно закону смещения Вина, сдвиг максимума равновесного теплового спектра соответствует приращению энергии ~5kΔT, где k – постоянная Больцмана, ΔT – приращение абсолютной температуры. Тогда, без учёта тепловых колебаний ядер, а единственно из-за теплового увеличения атомных радиусов, коэффициент линейного теплового расширения – особенно у тела, состоящего из однотипных одновалентных атомов – составлял бы примерно 100·10-6 град-1. Между тем, у многих металлов эта характеристика на порядок меньше.

Во-вторых, рассмотрим случай прохождения мощного коллимированного светового луча сквозь твёрдый образец, не являющийся идеально прозрачным, так что створ луча в образце отлично виден из-за бокового рассеяния. Это рассеяние говорит о том, что часть атомов (или молекул) в створе луча пребывает в возбуждённом состоянии – перед тем как переизлучить поглощённый квант. Соответствующее увеличение атомного радиуса (или размера молекулы), в случае кванта из сине-зелёной области, составляло бы, ориентировочно, 30% - но образец-то не разрушается! От этого парадокса не отмахнуться допущением того, что структура твёрдого тела и его оптические свойства обеспечиваются разными атомарными электронами. Ведь существуют полупрозрачные вещества – поваренная соль, например – состоящие только из одновалентных атомов, которые имеют только по одному электрону для обеспечения как структуры, так и оптических свойств.

Таким образом, нам придётся сделать вывод о том, что размеры атомарной связки «протон-электрон» в её возбуждённых стационарных состояниях равны её размеру в основном состоянии. Такое постоянство атомного радиуса легко обеспечивается программными средствами: требуется всего лишь задать, для каждого стационарного возбуждённого состояния, своё значение множителя K (см. (4.9.1)), который играет роль коэффициента пропорциональности между временными и пространственными масштабами, характерными для связующего алгоритма.

По логике вышеизложенного, у многоэлектронных атомов расстояния от ядра, на которых находятся области удержания электронов, жёстко заданы. Что же касается взаимного расположения этих областей удержания, то здесь, по-видимому, допускается некоторая вариабельность.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука
«Безумные» идеи
«Безумные» идеи

Книга И. Радунской «"Безумные" идеи» утверждает доминирующую роль «безумных» идей. Не планомерное, постепенное развитие мысли, а скачки в познании, принципиально новые углы зрения — вот что так эффективно способствует прогрессу. Именно от «безумных» идей ученые ждут сегодня раскрытия самых загадочных тайн мироздания.О наиболее парадоксальных, дерзких идеях современной физики — в области элементарных частиц, физики сверхнизких температур и сверхвысоких давлений, квантовой оптики, астрофизики, теории относительности, квантовой электроники, космологии и о других аспектах современного естествознания — рассказывает книга «"Безумные" идеи».Книга «"Безумные" идеи» была переведена на венгерский, немецкий, французский, чешский, японский языки. В Японии за полтора года она была переиздана девять раз.

Ирина Львовна Радунская

Физика