Читаем Евклид. Геометрия полностью

«Наше рассуждение, отрицающее актуальность бесконечного в отношении увеличения, как не проходимого до конца, не отнимает у математиков их исследования, ведь они теперь не нуждаются в таком бесконечном и не пользуются им: [математикам] надо только, чтобы ограниченная линия была такой величины, как им желательно, а в том же отношении, в каком делится самая большая величина, можно разделить какую угодно другую. Таким образом, для доказательств бесконечное не принесет им никакой пользы, а бытие будет найдено в [реально] существующих величинах».


Для понимания методологии Евклида очень важно ответить на вопрос: прав ли Аристотель, когда утверждает, что его философия бесконечности не относится к математике? Насколько строго Евклид придерживается ограничений, установленных Аристотелем, и в каких случаях он их нарушает? Евклид считает, что прямые — это прямые отрезки, а их концы — точки, то есть прямые конечны. Он дает определение именно отрезкам и рассматривает только их. В пятом постулате он избегает говорить о параллелизме, который, как мы увидим дальше, подразумевает существование бесконечности. В разделе по арифметике, в частности в предложении 20 книги IX, он говорит:

Простых чисел существует больше всякого предложенного количества простых чисел.

Такая формулировка позволяет Евклиду применить прямое доказательство, а если бы он воспользовался понятием актуальной бесконечности, то вынужден был бы прибегнуть к непрямому доказательству. В этом заключается одна из трудностей, перед которой нас часто ставит использование понятия бесконечности: приходится прибегать к косвенным доказательствам с помощью метода доведения до абсурда. Рассмотрим разницу между двумя типами доказательств на примере утверждения Евклида, процитированного выше. Начнем с прямого. Представим, что у нас есть бесконечное количество простых чисел: а, b,..., т. Возьмем число N = (а х b х ... x m) + 1. Если N— простое число, значит есть простое число, отличное от а, b, ..., m. Напротив, если N — составное число, то его делителем будет простое число (книга VII, предложение 32), которое должно быть отличным от каждого из ряда простых чисел а, b, ..., m.

Теперь обратимся к непрямому доказательству. Переформулируем предложение 20 следующим образом:

Ряд простых чисел бесконечен.

Если принять за истину обратное, то ряд простых чисел а, b, ..., m ограничен и содержит в себе их все. Но если мы повторим предыдущее доказательство, то получим число, отличное от а, b, ..., m, значит, последовательность не включает в себя все числа.

Однако Евклид не мог совершенно избежать использования актуальной бесконечности. Например, он пишет:

Книга I, определение 23. Параллельные суть прямые, которые, находясь в одной плоскости и будучи продолжены в обе стороны неограниченно, ни с той, ни с другой стороны не встречаются.

РИС. 6

РИС. 7


В этом утверждении прямо говорится о неограниченности, то есть подразумевается актуальная бесконечность. В той же первой книге это слово встречается еще в двух предложениях: в формулировке и в доказательстве.


Книга I, предложение 12. К данной неограниченной прямой из заданной точки, на ней не находящейся, можно провести перпендикулярную прямую (см. рисунок 6).

Книга I, предложение 22. Из трех прямых, которые равны трем данным, можно составить треугольник (см. рисунок 7).

Что заставляет Евклида бросать вызов аристотелевскому ограничению на использование бесконечности в действительности? Ответ прост. Он хочет, чтобы его утверждения были действительны в общем смысле, то есть не зависели от конкретного рисунка. В первом случае прямая, к которой мы хотим провести перпендикуляр, должна быть достаточно длинной, чтобы гарантировать, что исходная точка этого перпендикуляра будет над ней независимо от конкретной точки на рисунке. Во втором случае три стороны треугольника должны находиться на и над прямой, которая, соответственно, должна быть настолько длинной, чтобы вмещать их независимо от длин сторон, а для этого она должна быть бесконечной. Значит, в некотором смысле ограничение, установленное Аристотелем, отнимает что-то у математиков. Девять веков спустя Прокл в комментарии к первой книге «Начал» выразил свое мнение по этому поводу, анализируя предложение 12:


Перейти на страницу:

Все книги серии Наука. Величайшие теории

Похожие книги

Как изменить мир к лучшему
Как изменить мир к лучшему

Альберт Эйнштейн – самый известный ученый XX века, физик-теоретик, создатель теории относительности, лауреат Нобелевской премии по физике – был еще и крупнейшим общественным деятелем, писателем, автором около 150 книг и статей в области истории, философии, политики и т.д.В книгу, представленную вашему вниманию, вошли наиболее значительные публицистические произведения А. Эйнштейна. С присущей ему гениальностью автор подвергает глубокому анализу политико-социальную систему Запада, отмечая как ее достоинства, так и недостатки. Эйнштейн дает свое видение будущего мировой цивилизации и предлагает способы ее изменения к лучшему.

Альберт Эйнштейн

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Политика / Образование и наука / Документальное / Публицистика
Ешь правильно, беги быстро
Ешь правильно, беги быстро

Скотт Джурек – сверхмарафонец, то есть соревнуется на дистанциях больше марафонских, вплоть до 200-мильных. Эта книга – не просто захватывающая автобиография. Это еще и советы профессионала по технике бега и организации тренировок на длинные и сверхдлинные дистанции. Это система питания: Скотт при своих огромных нагрузках – веган, то есть питается только натуральными продуктами растительного происхождения; к этому он пришел, следя за своим самочувствием и спортивными результатами. И это в целом изложение картины мира сверхмарафонца, для которого бег – образ жизни и философия единения со всем сущим.Это очень цельная и сильная книга, которая выходит за рамки беговой темы. Это книга о пути к себе.На русском языке издается впервые.

Скотт Джурек , Стив Фридман

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература