Читаем Евклидово окно. История геометрии от параллельных прямых до гиперпространства полностью

Если бы средневековый торговец показал кому-нибудь результаты своей работы в таком виде, на него бы вытаращили глаза. Что означают эти разноцветные геометрические фигуры, соседствующие в том же документе с римскими цифрами? Макароны и сыр уже успели изобрести (сохранился английский рецепт XIV века [102] ), а вот идею поженить числа и геометрические фигуры – нет. Ныне графическое представление знания настолько общепринято, что мы едва ли думаем о нем как о математическом приеме: даже самый матемафобный директор «Эйвона» понимает, что линия на графике прибылей, тянущаяся вверх, есть многая радость. Но куда бы ни тянулись графики – вниз или вверх, – изобретение их стало жизненно важным шагом на пути к теории местоположения.

Союз чисел и геометрии греки понимали, увы, неверно – аккурат в этом месте философия оказалась помехой. В наши дни любой школьник изучает, грубо говоря, числовой ряд – линию, обеспечивающую упорядоченную связь между точками на ней и положительными и отрицательными целыми числами, равно как и между всеми дробями и прочими числами на этой линии. Эти «другие числа» – иррациональные, т. е. не целые и не дроби, как раз их отказался признавать Пифагор, но они тем не менее существуют. Числовой ряд обязан включать в себя и их – без иррациональных чисел в нем возникнет бесконечное множество дыр.

Мы уже говорили, как Пифагор открыл квадрат с длиной стороны в единицу, у которого диагональ равна квадратному корню из двух, а это иррациональное число. Если эту самую диагональ отложить в числовом ряду от нуля, другой ее конец обозначит точку, соответствующую иррациональному числу – квадратному корню из двух. Запретив обсуждение иррациональных чисел – они не вписывались в его представления о том, что все числа обязаны быть либо целыми, либо дробными, – Пифагор был вынужден запретить и ассоциацию прямой с числом. Таким способом он замел эту неувязку под ковер – и придушил тем самым одну из самых плодотворных идей в истории человеческой мысли. У всех свои недостатки.

Одним из немногих преимуществ утери греческих трудов стал упадок влияния пифагоровых представлений об иррациональных числах. Теория иррациональных чисел не получила твердого фундамента аж до самого Георга Кантора и работ его современника Рихарда Дедекинда – в XIX веке. И тем не менее, со Средних веков и до Дедекинда и Кантора большинство математиков и ученых закрывали глаза на кажущееся несуществование иррациональных чисел и вполне счастливо, хоть и неумело, все равно их применяли. Очевидно, радость получения правильного ответа перевешивала неприятности работы с числами, которых не существует.

В наше время применение «нелегальной» математики – общее место науки, особенно физики. Теория квантовой механики, например, разработанная в 1920–1930-х годах, очень полагалась на нечто придуманное английским физиком Полем Дираком – дельта-функцию. Согласно математике того времени, дельта-функция попросту равнялась нулю. По Дираку же, дельта-функция равна нулю всюду, кроме одной точки, где ее значение – бесконечность, и, если применить эту функцию вместе с определенными методами счисления, она дает ответы одновременно и конечные, и (обычно) отличные от нуля. Позднее французский математик Лоран Шварц смог доказать, что правила математики можно переформулировать так, чтобы допустить существование дельта-функции, и из этого доказательства родилась целая новая область математики [103] . Квантовые теории поля в современной физике в этом смысле тоже можно считать «нелегальными» – во всяком случае, никто пока не смог успешно доказать, говоря математически, что такие теории существуют «по правилам».

Средневековые философы горазды были говорить одно, а записывать другое – или даже писать сначала одно, а потом другое в полном противоречии с первым, лишь бы сберечь шкуру. И вот в середине XIV века Николай Орезмский [104] , позднее – епископ Лизьё, – изобретая графики, не слишком беспокоился о противоречиях, возникающих из-за иррациональных чисел. Орем по умолчанию игнорировал вопрос о том, достаточно ли одних лишь целых и дробных чисел для заполнения базисной прямой графика. Он сосредоточился на том, как приспособить свои новые картинки к анализу количественных отношений.

Графики можно воспринимать как изображение функции, отражающее изменение одного количества в связи с изменением другого. Прибыли компании «Эйвон» от продаж в странах третьего мира в зависимости от времени, сожженные вами калории в зависимости от пройденного расстояния, максимальная дневная температура воздуха в зависимости от географического местоположения – вот они, примеры функций. Любую можно понять, построив ее график. У графика из последнего примера есть специальное название, намекающее на некую более глубинную связь: это карта. Метеорологическая.

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература