Если бы средневековый торговец показал кому-нибудь результаты своей работы в таком виде, на него бы вытаращили глаза. Что означают эти разноцветные геометрические фигуры, соседствующие в том же документе с римскими цифрами? Макароны и сыр уже успели изобрести (сохранился английский рецепт XIV века [102] ), а вот идею поженить числа и геометрические фигуры – нет. Ныне графическое представление знания настолько общепринято, что мы едва ли думаем о нем как о математическом приеме: даже самый матемафобный директор «Эйвона» понимает, что линия на графике прибылей, тянущаяся вверх, есть многая радость. Но куда бы ни тянулись графики – вниз или вверх, – изобретение их стало жизненно важным шагом на пути к теории местоположения.
Союз чисел и геометрии греки понимали, увы, неверно – аккурат в этом месте философия оказалась помехой. В наши дни любой школьник изучает, грубо говоря, числовой ряд – линию, обеспечивающую упорядоченную связь между точками на ней и положительными и отрицательными целыми числами, равно как и между всеми дробями и прочими числами на этой линии. Эти «другие числа» – иррациональные, т. е. не целые и не дроби, как раз их отказался признавать Пифагор, но они тем не менее существуют. Числовой ряд обязан включать в себя и их – без иррациональных чисел в нем возникнет бесконечное множество дыр.
Мы уже говорили, как Пифагор открыл квадрат с длиной стороны в единицу, у которого диагональ равна квадратному корню из двух, а это иррациональное число. Если эту самую диагональ отложить в числовом ряду от нуля, другой ее конец обозначит точку, соответствующую иррациональному числу – квадратному корню из двух. Запретив обсуждение иррациональных чисел – они не вписывались в его представления о том, что все числа обязаны быть либо целыми, либо дробными, – Пифагор был вынужден запретить и ассоциацию прямой с числом. Таким способом он замел эту неувязку под ковер – и придушил тем самым одну из самых плодотворных идей в истории человеческой мысли. У всех свои недостатки.
Одним из немногих преимуществ утери греческих трудов стал упадок влияния пифагоровых представлений об иррациональных числах. Теория иррациональных чисел не получила твердого фундамента аж до самого Георга Кантора и работ его современника Рихарда Дедекинда – в XIX веке. И тем не менее, со Средних веков и до Дедекинда и Кантора большинство математиков и ученых закрывали глаза на кажущееся несуществование иррациональных чисел и вполне счастливо, хоть и неумело, все равно их применяли. Очевидно, радость получения правильного ответа перевешивала неприятности работы с числами, которых не существует.
В наше время применение «нелегальной» математики – общее место науки, особенно физики. Теория квантовой механики, например, разработанная в 1920–1930-х годах, очень полагалась на нечто придуманное английским физиком Полем Дираком –
Средневековые философы горазды были говорить одно, а записывать другое – или даже писать сначала одно, а потом другое в полном противоречии с первым, лишь бы сберечь шкуру. И вот в середине XIV века Николай Орезмский [104] , позднее – епископ Лизьё, – изобретая графики, не слишком беспокоился о противоречиях, возникающих из-за иррациональных чисел. Орем по умолчанию игнорировал вопрос о том, достаточно ли одних лишь целых и дробных чисел для заполнения базисной прямой графика. Он сосредоточился на том, как приспособить свои новые картинки к анализу количественных отношений.
Графики можно воспринимать как изображение функции, отражающее изменение одного количества в связи с изменением другого. Прибыли компании «Эйвон» от продаж в странах третьего мира в зависимости от времени, сожженные вами калории в зависимости от пройденного расстояния, максимальная дневная температура воздуха в зависимости от географического местоположения – вот они, примеры функций. Любую можно понять, построив ее график. У графика из последнего примера есть специальное название, намекающее на некую более глубинную связь: это карта. Метеорологическая.