Читаем Евклидово окно. История геометрии от параллельных прямых до гиперпространства полностью

Философ, чьих последователей Гаусс боялся более всего [152] , был Иммануил Кант, скончавшийся в 1804 году. Физически Кант был Тулуз-Лотреком философов: сутулый, едва ли пяти футов ростом, с сильно деформированной грудной клеткой. В 1740 году он поступил в университет Кёнингсберга на теологию, но обнаружил в себе влечение к математике и физике. Окончив университет, он принялся публиковать работы по философии и стал частным преподавателем и признанным лектором. Около 1770 года он взялся за работу, впоследствии ставшую его самой знаменитой книгой, – за «Критику чистого разума», изданную в 1781-м. Кант отмечал, что геометры его дней обращались в своих «доказательствах» к здравому смыслу и графическим изображениям, и считал, что от претензий на строгость [153] следует отказаться, а вместо этого полагаться на интуицию. Гаусс придерживался противоположного мнения [154] : строгость необходима, а большинство математиков – некомпетентны.

В «Критике чистого разума» Кант называл евклидово пространство «неизбежной необходимостью мысли» [155] . Гаусс не отметал идеи Канта прямо с порога. Он с ними сначала ознакомился, а потом их отмел. Более того, говорят, Гаусс, в попытке постичь Канта, прочел «Критику чистого разума» пять раз, а это, знаете ли, немалый труд для человека, освоившего русский и греческий с меньшим усилием, чем большинству из нас требуется для отыскания Χωριάτικη Σαλάτα1 [156] в афинском меню. Внутренняя борьба Гаусса становится понятнее, если представить, с какой ясностью Кант формулировал мысли о различии между аналитическим и синтетическим суждениями:

...

Во всех суждениях, в которых мыслится отношение субъекта к предикату (я имею в виду только утвердительные суждения, так как вслед за ними применить сказанное к отрицательным суждениям нетрудно), это отношение может быть двояким. Или предикат В принадлежит субъекту А как нечто содержащееся (в скрытом виде) в этом понятии А, или же В целиком находится вне понятия А, хотя и связано с ним. В первом случае я называю суждение аналитическим, а во втором – синтетическим [157] .

В наши дни математики и физики нимало не беспокоятся, что об их теориях скажут философы. Знаменитый американский физик Ричард Фейнман [Файнмен] на вопрос, что он думает о философии, дал емкий ответ, состоящий из трех букв: первая – «х», две остальные – характерное окончание «-ня» [158] . Но Гаусс воспринял работу Канта всерьез. Он писал, что различие между аналитической и синтетической мыслью, приведенное выше, «таково, что либо вязнет в тривиальности, либо ложно». Но мыслями этими – так же, как и своими теориями о неевклидовом пространстве, – он делился лишь с теми, кому доверял. Причуда истории, из-за которой вскинуто было немало бровей: Гаусс-то своих революционных работ 1815–1824 годов не публиковал – в отличие от двух других его современников.

* * *

23 ноября 1823 года Йоханн (Янош) Бойяи, сын старинного друга Карла Гаусса, Вольфганга Бойяи, написал отцу, что «создал новый, иной мир из ничего» [159] , имея в виду свое открытие неевклидова пространства. В тот же год в российском городе Казань Николай Иванович Лобачевский в своем неизданном учебнике геометрии осмыслил последствия нарушения пятого постулата. Лобачевский учился у Йоханна Бартельса, в те времена служившего профессором в Казани. И Вольфганг Бойяи, и Бартельс давно интересовались неевклидовым пространством и много обсуждали с Гауссом его соображения на этот счет.

Совпадение? Гений Гаусс открывает великую теорию и рад обсудить ее с друзьями, но отказывается ее публиковать. Вскоре после этого друзья и родственники этих друзей вдруг, откуда ни возьмись, выходят и заявляют, что они сделали точно такое же великое открытие. Это стечение обстоятельств породило как минимум одну песенку о Лобачевском [160] – с обвинительным текстом: «Ворец идей, ты не своди очей с чужих затей…» Однако большинство историков в наши дни считает, что передался скорее дух, нежели конкретика трудов Гаусса, а Бойяи и Лобачевский не ведали о работе друг друга – во всяком случае, в свое время.

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература