Читаем Евклидово окно. История геометрии от параллельных прямых до гиперпространства полностью

Майкельсон маленьким источником света генерировал узкий луч и направлял его на делитель. Поскольку луч ведет себя как волна, значит, если после воссоединения один луч вернулся быстрее другого, колебания этих двух лучей не останутся в одинаковой фазе, т. е. не будут двигаться «в ногу». В результате произойдет интерференция, а из нее можно вычислить временну́ю разницу и определить скорость движения в эфире, как и ранее. (Если б нам не нужен был этот самый интерференционный эффект, можно было бы провести такой эксперимент, просто-напросто посветив между двумя точками в разные стороны, и сравнить время движения света.)

Майкельсон не мог, конечно, надеяться на то, что два рукава его аппарата будут равны с точностью до длины волны или что ему удастся померить их длину с такой точностью. Более того, у него не было никакой возможности узнать, под каким углом его установка находится по отношению к вектору скорости движения эфира. Майкельсон умно разрешил эти затруднения, поворачивая аппарат на 90° и измеряя сдвиги интерференционной полосы по мере того, как лучи «менялись ролями», не прибегая к измерению самих интерференционных полос.

Для развития боксерских умений Майкельсону далеко ехать не потребовалось, а вот его судьба как ученого сложилась иначе. В 1880 году он получил разрешение военно-морского начальства на путешествие через Атлантику – продолжить образование. Подобные дотации были в те времена довольно распространены – эдакая попытка американского правительства украсить военную мускулатуру налетом интеллекта. Майкельсону тогда не исполнилось тридцати, но, оказавшись в Берлине и Париже, он уже разработал свою гениальную модель интерферометра.

Майкельсон предложил схему установки, которую требовалось собрать с ювелирной точностью: отклонение в одну тысячную миллиметра в длине одного рукава относительно другого ставило под угрозу любые замеры. Если температура в одном рукаве оказалась бы выше всего на одну сотую градуса, эксперимент Майкельсона пошел бы прахом. Прежде чем начать, Майкельсон укутал рукава аппарата бумагой – чтобы предотвратить температурные перепады, – а также обложил все приборы тающим льдом, чтобы поддерживать единую температуру в 0°С. Наконец, его установка обладала такой чувствительностью, что регистрировала возмущение, возникавшее от шагов по мостовой в ста ярдах от лаборатории.

Такие приборы стоят недешево. Майкельсон хотел изготовить латунную раму у знаменитых немецких умельцев приборостроения Шмидта и Хенша, но такой роскоши позволить себе не мог. По счастью, один его земляк, американец, за несколько лет до этого стяжал славу и состояние за изобретение «говорящего телеграфа» – приборчика, ныне называемого телефоном. В 1880 году его изобретатель, Александр Грэм Белл, уже трудился над новым проектом – видеофоном. Белл нанял Шмидта и Хенша строить себе исследовательские приборы и имел под это особый бюджет. Как раз на средства из него и соорудили аппарат Майкельсона.

Майкельсон осуществил свой эксперимент в немецком Потсдаме в апреле 1881 года. Вообще никакой разницы во времени прохождения света сквозь пространство он не обнаружил. Что это означало? Перед Майкельсоном не стояла цель разоблачить или даже проверить гипотезу эфира – он желал измерить нашу скорость в эфире. Ничего не обнаружив, он не сделал вывод, что эфира не существует, – он лишь заключил, что мы неким манером в нем не движемся. Как такое может быть: Земля не движется сквозь эфир? Один вариант ответа дал Френель и его вроде бы подтвердил, хоть и неточно, Физо: теория захвата эфира. В любом случае, ни сам Майкельсон, ни все остальные не восприняли полученные результаты как угрозу существованию эфира. Сэр Уильям Томсон (лорд Келвин), приехав в 1884 году в Соединенные Штаты [205] , выразился очень прямо: «…светоносный эфир есть… единственное вещество, в котором мы можем быть в динамике уверены. Лишь в этом мы убеждены, такова подлинность и состоятельность светоносного эфира». В конце концов электромагнитная теория Максвелла требовала наличия волн, а волнам нужна среда. Большинство физиков не обратило на опыт Майкельсона никакого внимания. Позднее он писал: «Я неоднократно пытался заинтересовать моих ученых друзей в этом эксперименте, но все тщетно… Меня обескуражил такой недостаток внимания к нему» [206] .

* * *
Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература