В каждой представлены некоторые замеры, т. е. каждая величина имеет погрешность эксперимента. Первый набор чисел назовем данными Алексея — допустим, их получил студент по имени Алексей, и, аналогично, второй и третий наборы — Николая и мамы. Если представить эти данные как функцию времени, возникнет ли какая-нибудь закономерность, а если возникнет, то какая? Вот в чем вопрос.
Глядя на числа в таблице, усмотреть закономерности непросто, но стоит построить графики, все немедленно проясняется. График, построенный на данных Алексея, — прямая, если не считать точки с координатой времени 2, где Алексей либо чихнул, либо отвлекся на приятеля и его компьютерную игру.
Данные Николая укладываются в хорошо нам известную форму под названием
Орем применил эту новую мощную геометрическую методику для доказательства одного из знаменитейших законов физики того времени — мертонского правила[105]
. Между 1325 и 1359 годами группа математиков из оксфордского Мертон-Колледжа, предложила понятийный аппарат для количественного описания движения. В античных дискуссиях расстояние и время рассматривались как количества, которые можно описать численно, однако «быстроту», она же «скорость», никто не считал.Данные принимают форму
Ключевая теорема, выведенная мертонской школой, — мертонское правило — оказалась своего рода мерной линейкой в гонках черепахи и зайчихи. Вообразим некоторую черепаху, которая бежит, скажем, одну минуту со скоростью, допустим, в одну милю в час. А теперь вообразим зайчиху, стартующую еще медленнее, но с постоянным ускорением — так, что к концу минуты она несется с гораздо большей прытью, чем ее соперница, движущаяся с постоянной скоростью. Согласно мертонскому правилу, если через минуту движения с постоянным ускорением зайчиха бежит вдвое быстрее черепахи, они прошли к этому моменту одно и то же расстояние. Если скорость зайчихи больше черепашьей более чем вдвое, она окажется впереди, а если менее чем вдвое — отстанет.
Если облечь все это в ученые термины, правило звучит так: расстояние, пройденное объектом с постоянным ускорением из состояния покоя, равно расстоянию, пройденному объектом за то же время со скоростью, равной половине от максимальной. С учетом мутности представлений о местоположении, времени и скорости, а также недоразвитости инструментов измерения мертонское правило производит сильное впечатление. Однако без приемов матанализа или алгебры мертонцы никак не могли доказать своих рассуждений.
Николай Орезмский доказал это правило геометрически, применив методику графиков. Он принялся откладывать время по горизонтальной оси, а скорость — по вертикальной. Таким способом постоянная скорость отображалась в виде горизонтальной прямой, а постоянное ускорение — линией, устремляющейся вверх под некоторым углом. Орем понял, что площадь под этими линиями — прямоугольник и треугольник соответственно — есть пройденное расстояние.
Расстояние, пройденное объектом с постоянным ускорением (в мертонском правиле), таким образом, есть площадь прямоугольного треугольника, чье основание пропорционально времени движения, а высота представляет максимальную скорость. Расстояние, пройденное объектом с постоянной скоростью, задается площадью прямоугольника с таким же основанием, как и у треугольника, а высота его вполовину меньше высоты треугольника. Оставалось лишь доказать, что площади этих двух фигур равны. Например, если удвоить этот треугольник, достроив к его гипотенузе такой же, и удвоить прямоугольник, достроив к нему такой же по верхней стороне, получится одна и та же фигура.
Орем применил аналогичное графическое рассуждение[106]
при формулировке закона, который обычно приписывают Галилею: расстояние, пройденное объектом с постоянным ускорением, растет с квадратом времени. Убедиться в этом можно, представив вновь все тот же прямоугольный треугольник, чья площадь есть расстояние, пройденное с постоянным ускорением. Эта площадь пропорциональна произведению основания на высоту, а они в свою очередь пропорциональны времени.