Осенью 1806 года не болезнь, а рана от мушкета, полученная в сражении с Наполеоном, унесла жизнь герцога. Гаусс стоял у окна в своем доме в Гёттингене и смотрел, как едет на повозке его смертельно раненый друг и покровитель. По иронии судьбы, Наполеон не стал уничтожать родной город Гаусса — из-за того, что «здесь живет величайший математик всех времен».
Смерть герцога, естественно, принесла семье Гаусса финансовые затруднения. Но, как выяснилось, это было меньшее из зол. В последующие несколько лет умерли отец Карла и его заботливый дядюшка Йоханн. А потом, в 1809-м, Йоханна родила их третьего ребенка — Луиса. Роды Минны были трудны, а с рождением Луиса и мать, и младенец тяжко заболели. Через месяц после родов Йоханна скончалась. Вскоре после ее смерти почил и новорожденный. За краткое время жизнь Гаусса потрясала одна трагедия за другой. Но и это еще не все: Минне тоже суждено было умереть молодой.
Гаусс вскоре женился повторно и родил в новом браке еще троих детей. Но для него после смерти Йоханны, похоже, не осталось поводов для радости. Он писал Бойяи: «Это правда — в моей жизни много было того, что чтимо в этом мире. Но поверьте мне, дорогой друг мой, трагедия прошивает мою жизнь красною лентой…»[152]
Незадолго до своей смерти в 1927 году один из внуков Карла обнаружил среди писем деда одно, залитое слезами. Поверх этих клякс дед писал:Глава 16. Падение пятого постулата
Гаусса не стали бы считать светилом математики, не повлияй он так глубоко на многие ее области. И тем не менее иногда Гаусса воспринимают как фигуру переходную — скорее как ученого, завершившего разработки, начатые Ньютоном, а не основоположника работ грядущих поколений. В части геометрии пространства это совсем не так: его усилия обеспечили математикам и физикам поле для работы на сто лет вперед. И лишь одно мешало революции произойти: Гаусс хранил свою работу в тайне.
Когда Гаусс в 1795 году стал гёттингенским студентом, он живо заинтересовался вопросом постулата параллельности. Один из преподавателей Гаусса — Абрахам Кёстнер — увлекался на досуге коллекционированием литературы по истории постулата. У Кёстнера даже был студент Георг Клюгель, написавший диссертацию — анализ двадцати восьми неудачных попыток доказать постулат. И все же ни Кёстнер, ни кто другой не готовы были к тому, что подозревал Гаусс: что пятый постулат может быть недействителен. Кёстнер даже говаривал, что лишь сумасшедший стал бы сомневаться в состоятельности постулата. Гаусс держал свое мнение при себе, хотя, как выяснилось, записывал соображения в свой научный журнал, который обнаружили через сорок три года после смерти ученого. Позднее Гаусс пренебрежительно отозвался о Кёстнере, баловавшемся писательством: «Ведущий математик среди поэтов, ведущий поэт среди математиков»[153]
.Между 1813 и 1816 годами, уже преподавая математическую астрономию в Гёттингене, Гаусс наконец произвел решительный прорыв, которого ждали со времен Евклида: он составил уравнения, описывающие части треугольника в новом, неевклидовом, пространстве, чью структуру мы теперь называем