Все это легко понять, если представить, как выглядит Земля из космоса. «Строго на восток» в странствиях по глобусу не реализуется, поскольку направления «север» и «восток» — не фиксированные. При перемещении из Нью-Йорка в Мадрид направления, называемые «на восток» или «на север», вращаются в трехмерном пространстве. Кратчайшая траектория между Нью-Йорком и Мадридом — или между любыми другими двумя точками на земном шаре — кривая, называемая большим кругом (это круг на земном шаре, центр которого совпадает с центром Земли; это самые большие окружности, какие можно изобразить на земной поверхности, отсюда и название). Большие круги — аналоги линий Пуанкаре во вселенной Пуанкаре, линии, которые мы по привычке называем прямыми, и они выполняют роль прямых в евклидовых аксиомах. Линии широт — большие круги, равно как и экватор, но лишь он — кривая с постоянной широтой (центры всех остальных кругов с постоянной широтой располагаются выше или ниже по оси Земли).
Нью-Йорк — Мадрид
Вид из космоса местным вроде Неевклиды не ведом. Для нее «центра Земли» не существует, а также не существует «космоса», и Гаусс доказал, что такое возможно. Неевклида, воодушевленная результатами Алексея и Николая, заключила бы, что пространство, в котором она живет, — неевклидово: не гиперболическое, а похожее на поверхность шара, т. е. эллиптическое.
В неевклидовом пространстве все большие круги пересекаются. Суммы углов в треугольнике всегда
Геометрия эллиптического пространства, называемая сферической, хорошо известна еще с античных времен. Большие круги еще тогда знали как геодезические. Геометрические формулы, описывающие части сферических треугольников, — уже обнаружены и применялись в картографии. Но эллиптические пространства не вписывались в евклидову парадигму, и открытие эллиптичности пространства земного шара досталось одному из учеников Гаусса — Георгу Фридриху Бернхарду Риману. Он совершил это открытие, когда жизнь Гаусса клонилось к закату, но именно оно, как никакое иное, в конце концов привело к революции искривленного пространства.
Глава 21. Повесть о двух инопланетянах
Георг Риман[179]
родился в 1826 году в маленькой деревне Брезеленц, неподалеку от мест, где появился на свет Гаусс. В семье Риманов было шестеро детей. Двум его сестрам, да и ему самому, выпала судьба умереть молодыми. Его мать скончалась, когда он был еще мал. До десяти лет его обучал дома отец, лютеранский пастор. Риман больше всего любил историю, особенно — польского национального движения. Серьезный юный Георг явно не производил впечатления души компании — он ею и не был. Напротив — выказывал патологическую застенчивость и скромность. И гениальность. Приверженцы конспирологических теорий предположили бы, имея в виду Гаусса и Римана, что в начале XIX века под немецким Гамбургом некая высшая инопланетная раса основала колонию и подбросила двум нищим местным семьям гениальных младенцев. И хотя никаких анекдотов о гениальном детстве Римана, в отличие от детства Гаусса, не сохранилось, похоже, Риман уже тогда был чуточку умнее, чем положено всем нам.Когда Риману исполнилось девятнадцать, директор его гимназии, человек по имени Шмальфус, дал ему кое-что занимательное — книгу Адриена Мари Лежандра[180]
В 1846 году все еще девятнадцатилетний Риман поступил в Университет Гёттингена, где преподавал Гаусс. Риман начал студентом-теологом — вероятно, рассчитывая молиться за угнетенных поляков. Однако вскоре переключился на предмет своей первой любви — математику. Недолго побыв в Берлине, в 1849 году Риман вернулся в Гёттинген, чтобы завершить работу над диссертацией. В 1851 году он сдал свой труд на суд в том числе и Гаусса, который к тому времени уже стал легендой и был столь же легендарно строг со своими студентами.