Читаем Евклидово окно. История геометрии от параллельных прямых до гиперпространства полностью

Алексей говорит, что это смешно, потому что непочтительно к Богу, т. е., иными словами, представляет божество несовершенным, способным на человеческие оплошности. Понятие о несовершенном Боге или Природе — вот что заботило многих физиков в квантовой механике. Богу же указать местоположение чего бы то ни было точно — раз плюнуть, нет?

Этот предел определенности в природе вдохновил Эйнштейна на знаменитое высказывание: «Квантовая механика действительно впечатляет. Но внутренний голос говорит мне, что это еще не настоящий Иаков. Эта теория говорит о многом, но все же не приближает нас к разгадке тайны Всевышнего. По крайней мере, я уверен, что Он не бросает кости»[282]. Если бы хохма была в ходу во времена Эйнштейна — а это очень старая шутка, — он, возможно, пробормотал: «Всевышний может метнуть молнию куда и когда пожелает».

Вероятно, — за исключением отношений Шрёдингера с особами противоположного пола — все в нашей жизни есть сплошная неопределенность. Так отчего же, спросим мы, принцип, утверждающий нечто очевидное, заслуживает столь величавого имени? Неопределенность принципа Гейзенберга — странного фасона. Это разница между классической и квантовой теорией — между пределами человеческих возможностей и, скажем так, божественных.

Загадайте ребенку загадку: все гамбургеры-«четверть фунтовики» в «Макдональдсе» весят по четверти фунта — правда или чушь? Детишки-циники скажут «чушь», исходя из логики, что компания, продающая сорок миллионов гамбургеров ежедневно, может крупно сэкономить на мясе, не докладывая сотую долю фунта в каждый. Но речь не о системной ошибке — в равной степени не может быть, что каждый гамбургер весит ровно 0,24 фунта. Весь фокус в том, что каждый бургер в «Макдональдсе» весит немножко по-разному.

Разница тут не сводится к кетчупу. Если аккуратно все измерить, выяснится, что каждый гамбургер имеет разную толщину, уникальную форму и личность — на микроскопическом уровне. Как и среди людей, среди гамбургеров нет двух одинаковых. С точностью до какого десятичного знака надо померить бургеры, чтобы все их различать по весу? Раз их продают свыше миллиарда в год, т. е. 109, этих знаков должно быть не менее 9. Однако вряд ли у этих бургеров поменяют название на «0,250000000-фунтовики».

Бургер бургеру рознь — то же верно и для экспериментальных замеров. Действия, производимые в процессе измерения, механическое и физическое состояние весов, потоки воздуха вокруг, местная сейсмическая активность, атмосферное давление — уйма мельчайших факторов, и каждый чуточку меняется при всяком следующем замере. Вводим различение потоньше — и с гарантией не получаем воспроизводимых результатов.

Вот это — не принцип неопределенности.

Квантовый принцип неопределенности идет дальше; он гласит, что определенные качества образуют комплементарные пары — пары, у которых есть определенное ограничение: чем точнее измерено одно качество, тем менее точно удастся измерить другое. Согласно квантовой теории, значение этих комплементарных свойств за пределами ограничивающей точности неопределенно, а не просто за пределами возможностей нашего оборудования.

Многие годы физики пытались доказать, что таково ограничение нашей теории, а не самой природы. Они предполагали, что где-то прячутся «скрытые переменные» — определенные, но неподвластные нашим измерениям. Оказывается, единственный вид измерения, доступный нам, — такой, что позволяет отмести эти самые скрытые переменные. В 1964 году американский физик Джон Белл объяснил, как это можно проделать[283]. В 1982-м эксперимент поставили, и он показал, что предположение о скрытых переменных неверно. Ограничение действительно обусловлено законами физики.

Математика принципа неопределенности утверждает: результат неопределенности двух комплементарных членов пары должен равняться числу, называемому постоянной Планка.

Местоположение — часть одной из комплементарный пар принципа неопределенности. Ее напарник, импульс, есть — без учета фактора массы — скорость объекта. Брачное свидетельство описывает ограничение для этой пары: погрешность одного меняется в обратной пропорции к точности второго. У этого ограничения нет исключений, это очень католический брак: никаких неверностей, никаких разводов. Умножаем погрешность определения местоположения на погрешность определения скорости и получаем число, равное числу герра Планка.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже