Читаем Евклидово окно. История геометрии от параллельных прямых до гиперпространства полностью

Пифагорейцы первыми занялись изучением математических и эстетических свойств музыкальных звуков. Они обнаружили, что, если дергать струну, она производит звук, или частоту, которая сильно меняется в зависимости от длины струны. Эта фундаментальная частота[298] связана с модой вибрации, в которой возникает максимальное отклонение от состояния покоя струны в ее средней точке. Но струна может колебаться и так, что ее средняя точка останется неподвижной, а максимумы отклонений возникнут посередине между концами струны и ее серединой. Такова будет фундаментальная мода колебаний, если прижать струну посередине. Это колебание с двумя одинаковыми волнами в пределах одной струны, но с вполовину меньшей длиной волны и удвоенной частотой по сравнению с фундаментальной. В музыкальных терминах она именуется второй гармоникой и звучит на октаву выше.

Если дернуть струну, возникнут колебания в форме трех полных волн, четырех и т. д. (но никогда не дробное число, иначе нарушится условие, что концы струны зафиксированы). Это высшие гармоники. Ноте, взятой на скрипке или пианино, к примеру, обычно сопутствует более сильная относительная амплитуда первых шести гармоник, нежели те, что дают другие инструменты. Звук трубы органа, с другой стороны, относительно обделен более высокими гармониками. Благодаря высшим гармоникам музыкальные инструменты — и семейства элементарных частиц — столь разнообразны.

Струны из струнной теории не привязаны за концы, как гитарные. Они бывают открытые и замкнутые. Они могут щепиться и соединяться или сливаться концами и образовывать две петли. Струна щепится или слипается — свойства ее меняются: издалека похоже, будто возник новый вид частиц. Обмен калибровочными частицами на самом деле есть расщепление и соединение струн, плавающих в пространстве-времени.

Из всего этого получается, что частицы, которые мы наблюдаем, — музыкальные шкатулки, а их свойства — слышимая нами музыка, которую они играют. В зависимости от сорта исполняемой музыки эти шкатулки, похоже, бывают многих разновидностей. Согласно теории струн, все музыкальные шкатулки идентичны и отличаются не внешним видом, а тем, как именно в них колеблется струна.

К примеру, энергия колебания зависит от длины волны и амплитуды. Чем больше пиков и провалов вдоль ее длины и чем сами они больше, тем энергичнее колебание. Поскольку из теории относительности нам известно, что масса и энергия эквивалентны друг другу, нас, вероятно, не удивит, что за пределами черного ящика струны, колеблющиеся энергичнее, воспринимаются нами как более массивные.

Это верно и для других свойств, не только для массы, — например, для разных видов заряда. Почему бы и нет? В смысле теории поля масса частицы есть разновидность заряда — по отношению к гравитационному полю. Согласно струнной теории все частицы в природе, включая и калибровочные, при всем разнообразии всевозможных свойств, суть разные формы колебаний струны.

Во Вселенной великое множество и разнообразие частиц. Достанет ли колеблющейся струне богатства и насыщенности, чтобы охватить всю эту великую непохожесть? Не в евклидовом мире.

Но моды колебаний струны, а значит, и предсказание существования частиц и их свойств сильно зависят от числа измерений, в которых струна колеблется, и от топологии этих измерений. Вот он, источник глубинной связи между свойствами пространства и свойствами самой материи: согласно теории струн, структура пространства определяет физические свойства элементарных частиц и сил природы. В струнной теории всего трех пространственных измерений недостаточно. Именно точная геометрия и топология дополнительных измерений определяют теорию элементарных частиц и сил, которые предсказывает теория струн.

Струна в одномерном пространстве может колебаться лишь одним способом: растягиваться и сокращаться. Такие колебания называется продольными. В двух измерениях струна может колебаться и таким способом, однако теперь ей доступен еще один, новый вид колебаний: поперечный, — он происходит перпендикулярно длине струны. Их мы, по сути, и обсуждали. В трех измерениях направление поперечных колебаний может вращаться по спирали — вспомните пружину Слинки. В высших измерениях все лишь усложняется.

Топология тоже влияет на колебания. Топологию так запросто не определишь, но, грубо говоря, она имеет отношение к свойствам поверхностей и пространств, которые связаны с их свойствами, но не с их метрикой (отношениями расстояний) или кривизной. Отрезок прямой топологически отличается от круга, потому что у него есть два конца, а у круга — ни одного. А вот разница между кругом и эллипсом тополога не интересует — это всего лишь вопрос кривизны. Можно еще вот так представлять себе эту разницу: любые две фигуры, которые можно трансформировать друг в друга растяжением без разрывов, имеют с точки зрения тополога одинаковые свойства.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже