После Брандейса Виттен оказался аспирантом-физиком в Принстоне. Поскольку физику ему раньше не преподавали, Виттена не могли принять на учебу, однако, судя по всему, у них существовала специальная программа приема для деток, которым суждено стать самыми умными людьми на свете. Когда же мы наконец познакомились, я сам был студентом-выпускником Беркли, где, прежде чем меня принять, уж точно хорошенько прочесали частым гребнем все мои оценки и иные навыки, полученные в процессе изучения
Виттен оказался долговязым черноволосым парнем в очках, оправленных в черный пластик. Довольно самоуверенный, но в целом милый, он говорил так тихо, что приходилось щурить уши, чтобы разбирать его слова. (Обычно оно того стоило.) Посреди той самой лекции, где я его впервые увидел, он вдруг умолк — со всей очевидностью думал некие глубокие думы. Но молчал он так долго, что публика начала хлопать, как невежды на концертах Бетховена, что путают конец части произведения с его финалом. Виттен сказал нам, несколько раздражившись, что его симфония еще не доиграна.
Ныне Виттена часто сравнивают с Эйнштейном. На то, видимо, есть масса причин, однако главная, вероятно, — в самих сравнивающих, которые мало о каких физиках слыхали. Таково проклятие легендарного статуса Эйнштейна: он стал клише, и всякого норовят назвать Эйнштейном того-то или Эйнштейном сего-то. Вот что тебе светит, если ты — «кадиллак» среди физиков. Между Эйнштейном и Виттеном, да, есть некоторое поверхностное сходство. Оба евреи, оба провели много лет в Институте прогрессивных исследований, демонстрировали живой интерес к Израилю и увлекались миротворческими инициативами. Письма двенадцатилетнего Виттена против войны во Вьетнаме в редакцию местной газеты «Балтимор Сан» были опубликованы[317], а позднее Виттен состоял в миротворческих группах в Израиле[318].
Но если уж вам так необходимо их сравнивать, Виттен в его трудах куда больше похож на Гаусса, нежели на Эйнштейна. Никакой старый друг не объяснял Виттену современную геометрию — как и Гауссу. И, как Гаусс, он своей работой серьезно влияет на направление развития современной математики, в отличие от работ Эйнштейна. Есть и оборотная сторона: подход Виттена (и всех остальных) к струнной теории, а ныне — к М-теории, зиждется на математических прозрениях, а не на физических принципах, как некогда у Эйнштейна. Возможно, не произвольно, а из-за исторического стечения обстоятельств: на теорию струн когда-то
В марте 1995 года Эдвард Виттен говорил о струнной теории на конференции в Университете Южной Калифорнии. Со времен суперструнной революции Шварца прошло одиннадцать лет, и для многих теория струн постепенно разваливалась. Речь Виттена все изменила. Он объяснил еще одно математическое чудо: все пять различных струнных теорий, по его утверждению, — лишь разные приблизительные формы
Этот прорыв Виттена теперь называют второй революцией суперструн. Согласно М-теории, струны являются не фундаментальными частицами[320], а примерами более общих объектов —
У М-теории есть, оказывается, такое свойство: то, что мы воспринимаем как местоположение и время, т. е. как координаты струны или браны, есть на самом деле математические наборы — матрицы. Лишь в приблизительном смысле — когда струны далеко разнесены в пространстве (хотя в житейском смысле все равно близко) — эти матрицы смахивают на координаты, поскольку все диагональные элементы набора становятся одинаковыми, а внедиагональные устремляются к нулю. Со времен Евклида это — самое глубинное изменение в понимании пространства.