Читаем Эволюция физики полностью

На реальной горке (рис. 19), при движении по которой трение препятствует вагону вновь подняться до высоты исходной точки, имеет место непрерывный взаимообмен между кинетической и потенциальной энергиями. Однако здесь сумма их не остаётся постоянной, а становится всё меньше и меньше. Теперь необходимо сделать важный и смелый шаг — связать между собой механический и тепловой аспекты движения. Значение следствий и обобщений, сделанных из этого шага, будет видно из дальнейшего.

Рис. 19

В этом случае в рассмотрение вовлекается нечто большее, чем кинетическая и потенциальная энергии, а именно: теплота, создаваемая трением. Соответствует ли эта теплота уменьшению механической, т. е. кинетической и потенциальной, энергии? Новое предположение неизбежно. Если теплоту можно рассматривать как форму энергии, то, может быть, сумма всех трёх энергий — теплоты, кинетической и потенциальной энергий — остаётся постоянной. Не одна теплота, а теплота и другие формы энергии, взятые вместе, неразрушимы, подобно субстанции. Это похоже на то, как если бы человек, обменивая свои доллары на фунты, должен был из тех же денег заплатить франками за комиссию по обмену; общая сумма денег тоже сохраняется, так что сумма долларов, фунтов и франков представляет собой определённую величину, которую можно установить соответственно определённому курсу обмена.

Прогресс науки разрушил старое понятие теплоты как субстанции. Мы пытаемся создать новую субстанцию, энергию, одной из форм которой является теплота.

<p>Мера превращения</p>

Меньше 100 лет назад Майер ввёл, а Джоуль экспериментально подтвердил новую идею, которая привела к понятию теплоты как формы энергии. Удивительно, что почти все фундаментальные работы о природе теплоты были сделаны физиками-непрофессионалами, людьми, которые рассматривали физику исключительно как своё любимое хобби. Это были широкообразованный шотландец Блэк, немецкий врач Майер и американский предприниматель граф Румфорд, впоследствии живший в Европе, где он занимался различной деятельностью и, в частности, был военным министром Баварии. Был среди них и английский пивовар Джоуль, проделавший в свободное время ряд наиболее важных экспериментов, касающихся сохранения энергии.

Джоуль экспериментально подтвердил предположение о том, что теплота — это форма энергии, и определил меру превращения.

Стоит потратить время, чтобы посмотреть, каковы были его опыты.

Кинетическая и потенциальная энергии системы составляют вместе её механическую энергию. Мы предполагаем, что в случае движения вагона по волнообразной горке часть механической энергии превращается в теплоту. Если это верно, то как в этом, так и во всех других аналогичных физических процессах должна существовать определённая мера превращения механической энергии в тепловую (механический эквивалент теплоты). Это строго количественный вопрос, но тот факт, что данное количество механической энергии может быть превращено в определённое количество теплоты, весьма важен. Нам хотелось бы знать, каким числом выражается мера превращений, т. е. сколько теплоты мы получим из данного количества механической энергии.

Определение этого числа как раз и было предметом исследований Джоуля. Механизм одного из его экспериментов очень похож на механизм часов с гирями. Завод таких часов состоит в поднятии двух гирь, благодаря чему увеличивается потенциальная энергия системы. Если такие часы ни с чем не связаны, их можно считать замкнутой системой. Постепенно гири опускаются и часы идут. По прошествии определённого времени гири достигнут своего наинизшего положения и часы остановятся. Что произошло с энергией? Потенциальная энергия гирь превратилась в кинетическую энергию механизма, а затем постепенно рассеялась в виде теплоты.

Рис. 20

Искусное изменение в механизме этого рода позволило Джоулю измерить тепловую потерю, а тем самым и меру превращения. В его приборе две гири вызывали вращение колеса с лопастями, помещённого в воду (рис. 20). Потенциальная энергия гирь превращалась в кинетическую энергию движущихся частиц воды, а стало быть, в теплоту, которая увеличивала температуру воды. Джоуль измерял это изменение температуры и, зная теплоёмкость воды, подсчитывал количество поглощённой теплоты. Он подытожил результаты многих опытов в следующих положениях:

1. Количество теплоты, произведённой трением тел, твёрдых или жидких, всегда пропорционально количеству затраченной силы (силой Джоуль называл энергию).

2. Количество теплоты, необходимое для увеличения температуры фунта воды (взвешенной в вакууме и взятой при температуре между 55 и 60 °F) на 1 °F, требует для своего развития расхода механической силы (энергии), представленной падением 772 фунтов с высоты в 1 фут.

Другими словами, потенциальная энергия 772 фунтов, поднятых на 1 фут над землёй, эквивалентна количеству теплоты, необходимой для того, чтобы поднять температуру 1 фунта воды от 55 до 56 °F.

Перейти на страницу:

Похожие книги

Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии
Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука