Возвращаясь к сравнительно простому вопросу об определении скорости света, мы можем заметить, что удивительно, почему Галилей не установил, что его эксперимент мог бы быть осуществлён значительно проще и точнее одним человеком. Вместо того чтобы ставить на некотором расстоянии от себя своего компаньона, он мог бы установить там зеркало, которое автоматически посылало бы сигнал сразу же после его получения.
Около 250 лет спустя зеркало использовал Физо, который был первым, кто определил скорость света с помощью экспериментов со светом, исходящим от земного источника. С помощью астрономических наблюдений скорость света была определена Рёмером гораздо раньше, хотя и с меньшей точностью.
Совершенно ясно, что благодаря своей огромной величине скорость света могла быть измерена только при условии, если расстояния были сравнимы с расстояниями между Землёй и другими планетами Солнечной системы, или же с помощью весьма утончённой экспериментальной техники. Первый метод — это метод Рёмера, второй же — метод Физо. Со времени этих первых экспериментов скорость света, представляющая весьма важную величину, измерялась много раз со всё возрастающей точностью. В нашем столетии Майкельсон изобрёл для этой цели весьма совершенную аппаратуру. Результат этих экспериментов можно выразить просто: скорость света в
Свет как субстанция
Мы опять начинаем с нескольких экспериментальных фактов. Только что приведённая величина относится к скорости света в
Один из наиболее простых оптических фактов — это прямолинейное распространение света. Опишем примитивные эксперименты, показывающие это. Перед точечным источником помещён экран с отверстием. Точечный источник — это очень малый источник света, скажем маленькое отверстие в закрытом фонаре. На отдалённой стене отверстие в экране будет представлено в виде светлого пятна на тёмном фоне. Рис. 37 показывает, как это явление связано с прямолинейным распространением света. Все подобные явления, даже в более сложных случаях, в которых кроме света и тени появляются ещё и полутени, можно объяснить, если предположить, что и в вакууме, и в воздухе свет распространяется по прямым линиям.
Рис. 37
Возьмём другой случай, когда свет проходит через вещество. Пусть световой пучок проходит через вакуум и падает на стеклянную пластинку. Что происходит? Если бы закон прямолинейного движения был по-прежнему справедлив, то путь светового пучка шёл бы вдоль линии, указанной на рис. 38 пунктиром. Но в действительности это не так. Луч преломляется, как указано на рисунке. Явление, которое мы здесь наблюдаем, называется
Рис. 38
Этих фактов достаточно для того, чтобы построить элементарную механическую теорию света. Наша цель здесь — показать, как идеи субстанции, частиц и сил проникли в область оптики и как в конечном счёте потерпела крах старая точка зрения.
Здесь теория приходит на ум в самой простой и примитивной форме. Предположим, что все светящиеся тела испускают частицы света, или
Рис. 39