Но необходим ещё другой существенный шаг. Согласно опыту Фарадея, необходим проводник, с помощью которого обнаруживается наличие электрического поля, так же как в опыте Эрстеда необходим магнитный полюс или игла, обнаруживающая наличие магнитного поля. Новые теоретические идеи Максвелла идут дальше этих экспериментальных фактов. Электрическое и магнитное поля или, короче,
Таким образом, к уравнениям Максвелла приводят два существенных шага. Первый шаг: в рассмотренных опытах Эрстеда и Роуланда силовые линии магнитного поля, навивающиеся на ток, и изменяющееся электрическое поле должны быть стянуты к точке; в рассмотренном опыте Фарадея силовые линии электрического поля, охватывающие изменяющееся магнитное поле, тоже должны быть стянуты к точке. Второй шаг состоит в трактовке поля как чего-то реального. Созданное однажды электромагнитное поле существует, действует и изменяется согласно законам Максвелла.
Уравнения Максвелла описывают структуру электромагнитного поля. Ареной этих законов является всё пространство, а не одни только точки, в которых находятся вещество или заряды, как это принимается для механических законов.
Вспомним, как обстояло дело в механике. Зная положение и скорость частиц в начальный момент времени, зная действующие силы, можно предвидеть всю траекторию, которую частица опишет в будущем. В теории Максвелла, если только мы знаем поле в какой-либо момент времени, мы можем вывести из уравнений, установленных этой теорией, как будет изменяться всё поле в пространстве и во времени. Уравнения Максвелла позволяют нам следовать за историей поля, так же как уравнения механики позволяли следовать за историей материальных частиц.
Но имеется ещё одно существенное различие между механическими законами и законами поля Максвелла. Сравнение законов тяготения Ньютона и законов поля Максвелла подчеркнёт некоторые характерные черты, выраженные этими уравнениями.
С помощью законов Ньютона мы можем вывести движение Земли, зная силу, действующую между Солнцем и Землёй. Эти законы связывают движение Земли с действием удалённого Солнца. И Земля, и Солнце, хотя они и далеки друг от друга, оба принимают участие в игре сил.
В теории Максвелла нет вещественных участников действия. Математические уравнения этой теории выражают законы, управляющие электромагнитным полем. Они не связывают, как это имеет место в законах Ньютона, два далеко разделённых события, они не связывают события
Изучение уравнений Максвелла с математической стороны показывает, что из них можно сделать новые и действительно неожиданные заключения, а всю теорию можно испытать на гораздо более высоком уровне, потому что теоретические следствия теперь имеют количественный характер и обосновываются всей цепью логических аргументов.
Представим себе опять идеализированный опыт. Небольшая электрически заряженная сфера под влиянием внешних сил вынуждена быстро и ритмично колебаться, подобно маятнику. Как, опираясь на знания об изменениях поля, которые уже есть у нас, будем мы описывать на языке поля всё, что при этом происходит?