Читаем Эволюция физики полностью

Законы преобразования, сформулированные нами выше для координат и скоростей, мы будем называть законами преобразования классической механики, или, короче, классическими преобразованиями.

Эфир и движение

Принцип относительности Галилея справедлив для механических явлений. Во всех инерциальных системах, движущихся относительно друг друга, применимы одни и те же законы механики. Справедлив ли этот принцип и для немеханических явлений, особенно тех, для которых понятия поля оказались столь важными? Все проблемы, которые сконцентрированы вокруг этого вопроса, сразу же приводят нас к исходной точке теории относительности.

Мы помним, что скорость света в вакууме или, другими словами, в эфире равна 300000 км/с и что свет — это электромагнитные волны, распространяющиеся в эфире. Электромагнитное поле несёт энергию, которая, будучи излучена однажды из своего источника, ведёт независимое существование. Пока мы будем по-прежнему считать, что эфир есть среда, в которой распространяются электромагнитные, а стало быть, и световые волны, хотя мы и знаем хорошо, как много трудностей связано с его механической структурой.

Представим себе, что мы сидим в закрытой комнате, настолько изолированной от внешнего мира, что воздух не может ни войти, ни удалиться из неё. Если мы тихо сидим и разговариваем, то с физической точки зрения создаём звуковые волны, которые распространяются в воздухе от их покоящегося источника со скоростью звука. Если бы между ртом и ухом не было воздуха или другой вещественной среды, то мы не могли бы обнаружить звук. Опыт показал, что скорость звука в воздухе одинакова во всех направлениях, если нет ветра, и воздух находится в покое относительно выбранной системы координат.

Вообразим теперь, что наша комната движется прямолинейно и равномерно в пространстве. Человек снаружи видит сквозь стеклянные стены движущейся комнаты (или поезда, если вы предпочитаете) всё, что происходит внутри. Из измерений внутреннего наблюдателя он может найти скорость звука относительно его системы координат, связанной со средой, по отношению к которой движется комната. Здесь опять возникает старая, много раз обсуждавшаяся проблема определения скорости в одной системе координат, если она уже известна в другой системе.

Наблюдатель в комнате заявляет: «Скорость звука для меня одинакова во всех направлениях».

Внешний наблюдатель заявляет: «Скорость звука, распространяющегося в движущейся комнате, определённая в моей системе координат, не одинакова во всех направлениях. Она больше установленной скорости звука в направлении движения комнаты и меньше — в противоположном».

Эти заключения вытекают из классического преобразования и могут быть доказаны экспериментально. Комната увлекает находящуюся в ней материальную среду, воздух, в котором распространяются звуковые волны, и поэтому скорости звука будут различны для внешнего и внутреннего наблюдателей.

Рассматривая звук как волну, распространяющуюся в материальной среде, можно сделать некоторые дальнейшие выводы. Если мы не желаем слышать говорящего, мы можем поступить следующим, хотя и не наипростейшим путём, а именно: бежать со скоростью, большей, чем скорость звука относительно воздуха, который окружает оратора. Тогда произведённые звуковые волны никогда не будут в состоянии достичь наших ушей. С другой стороны, если мы пропустили важное слово, которое никогда не будет повторено, мы должны бежать со скоростью большей, чем скорость звука, чтобы настичь ушедшую волну и поймать давно произнесённое слово. Ни в одном из этих примеров нет ничего иррационального, за исключением того, что в обоих случаях мы должны будем бежать со скоростью около 400 м/с, но мы вполне можем представить себе, что дальнейшее развитие техники сделает такие скорости возможными. Пуля, выпущенная из ружья, действительно движется со скоростью большей, чем скорость звука, и человек, помещённый внутри такой пули, никогда не услышал бы звук выстрела.

Все эти примеры — чисто механического характера, и мы можем теперь сформулировать важнейшие вопросы: можно ли всё только что сказанное о звуковой волне повторить применительно к световой волне? Можно ли принцип относительности Галилея и классические преобразования применить, наряду с механическими, также и к оптическим и электрическим явлениям? Было бы рискованно ответить на эти вопросы простым «да» или «нет», не вникая в их смысл более глубоко.

В случае звуковой волны в комнате, движущейся относительно внешнего наблюдателя прямолинейно и равномерно, очень существенны для наших выводов следующие обстоятельства:

Движущаяся комната увлекает воздух, в котором распространяются звуковые волны;

Перейти на страницу:

Похожие книги

Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии
Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука