Возьмём другой пример. Пусть спектр светящегося газа некоторого элемента, помещённого перед спектроскопом, состоит из линий определённых длин волн. Появление дискретной серии волн определённых длин является характеристикой атомных явлений, в которых обнаруживается существование элементарных квантов.
Но имеется ещё и другая сторона этой проблемы. Некоторые из спектральных линий очень ярки, а другие слабы. Линия ярка, если испускается сравнительно большое число фотонов, относящихся к этой отдельной длине волны; линия слаба, если испускается сравнительно небольшое число фотонов, относящихся к этой длине волны. Утверждения теории опять имеют лишь статистический характер. Каждая линия соответствует переходу с более высокого уровня энергии на более низкий. Теория сообщает нам лишь вероятности каждого из этих возможных переходов, но ничего не говорит о действительном переходе какого-либо индивидуального атома. Теория действует великолепно, потому что во всех этих явлениях участвуют большие совокупности, а не отдельные индивидуумы.
Кажется, что новая квантовая физика имеет некоторое сходство с кинетической теорией материи: обе они — статистического характера и обе относятся к большим совокупностям. Но это не так! В этой аналогии очень важно увидеть не только сходство, но и различие. Сходство между кинетической теорией вещества и квантовой физикой лежит главным образом в их статистическом характере. Но каковы различия?
Если мы хотим знать, сколько мужчин и женщин в возрасте свыше 20 лет проживают в городе, мы должны дать каждому гражданину заполнить анкету с пунктами: «мужчина», «женщина», «возраст». Предполагая, что каждый ответ правильный, мы можем, подсчитав и распределив ответы, получить результат статистического характера. При этом индивидуальные имена и адреса, указанные в ответе, не будут приняты во внимание. Наш статистический вывод получен на основе ознакомления с каждым отдельным индивидуумом. Подобно этому, в кинетической теории материи мы имеем статистические законы, управляющие поведением совокупностей, полученные на основе индивидуальных законов.
Но в квантовой физике положение дел совершенно другое. Здесь статистические законы даны непосредственно. Индивидуальные законы исключены. В примере фотона или электрона, проходящих через два отверстия, мы видели, что не можем описать возможное движение элементарных частиц в пространстве и времени так, как это делали в классической физике.
Квантовая физика отказывается от индивидуальных законов элементарных частиц и устанавливает
Мы должны были отказаться от описания индивидуальных случаев как объективных явлений в пространстве и времени; мы должны были ввести законы статистического характера. Они являются основной характеристикой современной квантовой физики.
Раньше, когда мы указывали на новые физические реальности, на электромагнитное поле и поле тяготения, мы стремились в общих словах описать лишь характерные черты уравнений, посредством которых идеи формулировались математически. То же самое мы сделаем теперь с квантовой физикой, касаясь только очень кратко работ Бора, де Бройля, Шрёдингера, Гейзенберга, Дирака и Борна.
Рассмотрим случай одного электрона. Электрон может находиться под влиянием произвольного внешнего электромагнитного поля или же быть свободным от всех внешних воздействий. Он может двигаться, например, в поле атомного ядра или может дифрагировать, проходя через кристалл. Квантовая физика учит нас, как формулировать математические уравнения для любой из этих проблем.