Читаем Эволюция физики полностью

Представим себе, что тонкая, докрасна раскаленная металлическая проволока помещена в разреженный водород. Проволока будет испускать электроны во всех направлениях. Действием внешнего электрического поля им будет сообщена определенная скорость. Электрон увеличивает свою скорость подобно камню, падающему в поле тяготения. Этим методом можно получить пучок электронов, движущихся в определенном направлении с определенной скоростью. Подвергая электроны действию очень сильных полей, мы можем в наше время достигнуть скоростей, сравнимых со скоростью света. Что же случится, если пучок электронов с определенной скоростью ударится о молекулы разреженного водорода? Удар достаточно быстрого электрона не только расщепит молекулу водорода на два ее атома, но и вырвет электрон из одного из этих атомов.

Примем как факт, что электроны суть составные части вещества. В таком случае атом, из которого выбит электрон, не может быть электрически нейтральным. Если он раньше был нейтральным, то он не может быть нейтральным теперь, так как он стал беднее одним элементарным зарядом. То, что осталось, должно иметь положительный заряд. Более того, так как масса электрона гораздо меньше массы легчайшего атома, мы с уверенностью можем заключить, что гораздо большая часть массы атома представлена не электронами, а остающимися элементарными частицами, значительно более тяжелыми, чем электроны. Мы называем эту тяжелую часть атома его ядром.

Современная экспериментальная физика разработала методы расщепления атомных ядер, превращения атомов одного элемента в атомы другого и вырывания из ядер тяжелых элементарных частиц, из которых ядра состоят. Этот раздел физики, известный под названием физики ядра, развитию которой много содействовал Резерфорд, с экспериментальной точки зрения является наиболее интересным. Но в настоящее время все еще нет простой по своим основным идеям теории, которая объединяла бы богатое разнообразие фактов в области ядерной физики. Так как в этой книге мы интересуемся только общими идеями физики, мы опустим этот раздел, несмотря на его огромную важность в современной физике.

<p>Кванты света</p>

Рассмотрим стенку, построенную вдоль морского берега. Морские волны непрерывно ударяются о стенку, каждый раз что-то смывая с ее поверхности, и отступают, предоставляя свободный путь для приходящих волн. Масса стенки уменьшается, и мы можем спросить, как велика часть, смытая, скажем, за год. А теперь обрисуем другой процесс. Мы хотим уменьшить массу стенки на то же самое количество, как и раньше, но другим путем. Мы стреляем в стенку, разбивая ее в тех местах, куда попадают пули. Масса стенки будет уменьшаться, и мы легко можем представить себе, что в обоих случаях достигается одно и то же уменьшение массы. Но по виду стенки мы легко могли бы обнаружить, действовали ли на стенку непрерывные морские волны или прерывный ливень пуль. Для понимания явлений, которые мы здесь описываем, полезно учесть это различие между морскими волнами и ливнем пуль.

Мы указывали раньше, что раскаленная проволока испускает электроны. Здесь мы введем другой путь выбивания электронов из металла. Пусть на металлическую поверхность падает однородный свет, например фиолетовый, имеющий, как мы знаем, определенную длину волны. Свет выбивает из металла электроны. Электроны вырываются из металла, и ливень их устремляется вперед с определенной скоростью. Основываясь на законе сохранения энергии, мы можем сказать: энергия света частично превращается в кинетическую энергию вырванных электронов. Современная экспериментальная техника позволяет нам подсчитать число этих электронов-снарядов, определить их скорость, а стало быть, их энергию. Это вырывание электронов падающим на металл светом называется фотоэлектрическим эффектом.

Мы рассматриваем действие однородной световой волны с некоторой определенной интенсивностью. Как и в каждом эксперименте, мы должны теперь изменять условия эксперимента, чтобы посмотреть, будет ли это иметь какое-либо влияние на рассматриваемый эффект.

Перейти на страницу:

Похожие книги

Бозон Хиггса
Бозон Хиггса

Джим Бэгготт, ученый, писатель, популяризатор науки, в своей книге подробно рассматривает процесс предсказания и открытия новой частицы – бозона Хиггса, попутно освещая такие вопросы фундаментальной физики, как строение материи, происхождение массы и энергии. Автор объясняет, что важность открытия частицы заключается еще и в том, что оно доказывает существование поля Хиггса, благодаря которому безмассовые частицы приобретают массу, что является необходимым условием для возникновения материи. Из книги вы узнаете о развитии физических теорий, начиная с античного понятия об атоме, и техническом прогрессе, позволившем их осуществить, а также историю обнаружения элементарных частиц.

Джим Бэгготт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Прочая научная литература / Прочая справочная литература / Образование и наука / Словари и Энциклопедии