Предположим, что пучок рентгеновских лучей падает на кристалл, а затем, пройдя сквозь него, регистрируется на фотографической пластинке. На пластинке в таком случае обнаруживается дифракционная картина. Чтобы изучить спектры рентгеновских лучей, чтобы из дифракционной картины вывести определенные заключения о длине волны, применялись различные методы. То, что здесь мы рассказали в нескольких словах, заполнило бы целые тома, если бы были изложены все теоретические и экспериментальные подробности. На рис. 80 мы воспроизвели только одну дифракционную картину, полученную одним из разнообразных методов. Мы снова видим темные и светлые кольца, столь характерные для волновой теории. В центре виден след недифрагированного луча. Если бы между источником рентгеновских лучей и фотографической пластинкой не был помещен кристалл, то, кроме этого следа, на пластинке ничего не было бы видно. Из таких фотографий можно подсчитать длины волн рентгеновских спектров, а с другой стороны, если длина волны известна, можно сделать заключение о структуре кристалла.
Рис. 80. Дифракция рентгеновых лучей (Фотография Ластовьевского и Грегора)
Волны материи
Как истолковать тот факт, что в спектрах элементов оказываются лишь определенные характерные длины волн?
В физике часто случалось, что существенный успех был достигнут проведением последовательной аналогии между не связанными по виду явлениями. В этой книге мы часто видели, как идеи, созданные и развитые в одной ветви науки, были впоследствии успешно применены в другой.
Развитие механистических взглядов и теории поля дает много примеров этого рода. Сравнение разрешенных проблем с проблемами неразрешенными может подсказать новые идеи и пролить новый свет на наши трудности. Легко найти поверхностную аналогию, которая в действительности ничего не выражает. Но вскрыть некоторые общие существенные черты, скрытые под поверхностью внешних различий, создать на этой базе новую удачную теорию — это важная созидательная работа. Развитие так называемой волновой механики, которое началось с работ де Бройля и Шрёдингера около 15 лет тому назад, является типичным примером достижений успешной теории, полученной путем глубоких и удачных аналогий.
Наш исходный пункт — это классический пример, ничего общего не имеющий с современной физикой. Возьмем в руки конец очень длинной гибкой резиновой трубки или пружины и будем двигать его ритмично вверх и вниз так, чтобы конец колебался. Тогда, как мы видели из многих других примеров, колебанием создается волна, распространяющаяся по трубке с определенной скоростью (рис. 81). Если мы представим себе бесконечно длинную трубку, то группы волн, однажды отправленные, будут следовать в своем бесконечном путешествии без интерференции.
Рис. 81
Возьмем теперь другой пример. Оба конца той же самой трубки закреплены. Если угодно, можно использовать скрипичную струну. Что происходит теперь, когда на одном конце резиновой трубки или струны создается волна? Волна, как и в предыдущем случае, начнет свое путешествие, но она скоро отразится от другого конца трубки. Теперь мы имеем две волны: одну, созданную колебанием, и другую, созданную отражением; они движутся в противоположных направлениях и интерферируют друг с другом. Нетрудно было бы проследить интерференцию обеих волн и определить характер волны, образующейся из их сложения; она называется
Простейшим примером стоячей волны является движение струны с двумя закрепленными концами вверх и вниз, как показано на рис. 82. Это движение есть результат того, что одна волна накладывается на другую, когда обе они проходят в различных направлениях. Характерная черта этого движения состоит в том, что в покое остаются только две конечные точки. Они называются
Рис. 82
Но это только простейший вид стоячих волн. Существуют и другие. Например, стоячая волна может иметь и три узла — по одному на каждом конце и один в середине. В этом случае в покое всегда остаются три точки. Из рис. 83 видно, что здесь длина волны вдвое меньше длины волны в примере с двумя узлами. Аналогично стоячие волны могут иметь четыре (рис. 84), пять узлов и более. В каждом случае длина волны будет зависеть от числа узлов.
Рис. 83
Рис. 84
Это число может быть только целым и может изменяться только скачками. Предложение типа «Число узлов в стоячей волне равно 3,576» есть чистая бессмыслица. Таким образом, длина волны может изменяться только прерывно (дискретно). Здесь, в этой классической проблеме, мы узнаем знакомые черты квантовой теории. Стоячая волна, созданная скрипачом, фактически еще более сложна, будучи смесью очень многих волн с двумя, тремя, четырьмя, пятью узлами и более, а стало быть, смесью различных длин волн.