Читаем Эволюция. Классические идеи в свете новых открытий полностью

В книге «Рождение сложности» немало говорилось об эволюционной роли симбиоза. На одних мутациях и отборе можно уехать далеко, но возможность комбинировать эволюционные «достижения» разных организмов в одном симбиотическом сверхорганизме открывает еще более впечатляющие перспективы. Впрочем, чтобы наладить с кем-то эффективный симбиоз, без мутаций и отбора тоже не обойтись. Такие договоры на гербовой бумаге не подписываются, тут нужно тщательно приладиться друг к другу.

Одним из таких межорганизменных «договоров» является симбиоз наземных растений с почвенными грибами и бактериями. Эволюционный успех наземных растений во многом был обеспечен именно этими взаимовыгодными отношениями: грибы и бактерии снабжают растение соединениями азота и фосфора, получая взамен углеводы, образуемые растением в ходе фотосинтеза. Ведь сами наземные растения так и не научились фиксировать азот.

Самой древней разновидностью такого симбиоза является микориза, известная в двух вариантах: более простая эктомикориза (гриб не проникает внутрь растительных клеток) и эндомикориза, или арбускулярная микориза, при которой гифы гриба врастают внутрь клеток корня. Судя по палеонтологическим данным, арбускулярная микориза существовала уже у древнейших наземных растений, робко пытавшихся освоить негостеприимную сушу 450 млн лет назад, в ордовикском периоде. Весьма вероятно, что без симбиоза с грибами эти попытки были бы обречены на провал – или, что еще вероятнее, их бы не было вовсе. Некоторые данные указывают на то, что симбиоз с грибами зародился у зеленых водорослей, предков наземных растений, еще в водной среде, что и обеспечило возможность освоения суши. О древности арбускулярной микоризы свидетельствует, помимо прочего, ее широкое распространение во всех группах наземных растений.

Помимо грибной микоризы пользуется спросом и симбиоз с азотфиксирующими бактериями. Отношения растений с азотфиксаторами тоже имеют древнюю историю, однако в большинстве случаев речь идет о внеклеточных бактериальных симбионтах. Только некоторые покрытосеменные (цветковые) растения сравнительно недавно научились культивировать бактерии внутри клеток своих корней, в особых органах – клубеньках. Клубеньковые симбиозы бывают двух типов: 1) симбиоз бобовых с ризобиями (бактериями из группы альфапротеобактерий); 2) актинориза – симбиоз с актинобактериями рода Frankia. Актинобактерии образуют многоклеточный мицелий наподобие грибов; раньше их относили к грибам и называли актиномицетами.

Клубеньковые симбиозы встречаются только в четырех группах (порядках) покрытосеменных: у бобовых (Fabales), розовых (Rosales), тыквенных (Cucurbitales) и буковых (Fagales), причем не у всех, а только у части представителей. Недавно на основе молекулярно-генетических данных было установлено, что эти четыре порядка представляют собой монофилетическую кладу, т. е. группу, происходящую от общего предка и включающую всех его ныне здравствующих потомков. Вероятно, у общего предка этой группы произошли какие-то генетические изменения, обусловившие возможность развития клубенькового симбиоза. Одни представители группы впоследствии воспользовались этой возможностью, другие нет.

Симбиоз бобовых с ризобиями изучен лучше, чем актинориза. Но у двух типов клубеньковых симбиозов обнаружилось много общего: по меньшей мере семь генов задействованы в обоих симбиозах. Эти гены получили название «общих генов симбиоза». По-видимому, при становлении клубенькового симбиоза была использована древняя генетическая программа, сложившаяся изначально для обслуживания внутриклеточного симбиоза с грибами. Для полноты картины хотелось бы уяснить, что же изменилось в генах при становлении тесных отношений с азотфиксаторами.

В 2008 году британские и германские биологи (Markmann et al., 2008) взяли разные группы цветковых и проанализировали строение белков, кодируемых «общими генами симбиоза». Оказалось, что у всех цветковых большинство этих белков имеют почти одинаковую, «консервативную» структуру. И только один из них оказался вариабельным. Белок этот называется SYMRK (symbiosis receptor kinase). Он различается у клубеньковых растений, двудольных и однодольных.

Перейти на страницу:

Похожие книги

Происхождение мозга
Происхождение мозга

Описаны принципы строения и физиологии мозга животных. На основе морфофункционального анализа реконструированы основные этапы эволюции нервной системы. Сформулированы причины, механизмы и условия появления нервных клеток, простых нервных сетей и нервных систем беспозвоночных. Представлена эволюционная теория переходных сред как основа для разработки нейробиологических моделей происхождения хордовых, первичноводных позвоночных, амфибий, рептилий, птиц и млекопитающих. Изложены причины возникновения нервных систем различных архетипов и их роль в определении стратегий поведения животных. Приведены примеры использования нейробиологических законов для реконструкции путей эволюции позвоночных и беспозвоночных животных, а также основные принципы адаптивной эволюции нервной системы и поведения.Монография предназначена для зоологов, психологов, студентов биологических специальностей и всех, кто интересуется проблемами эволюции нервной системы и поведения животных.

Сергей Вячеславович Савельев , Сергей Савельев

Биология, биофизика, биохимия / Зоология / Биология / Образование и наука
Логика случая. О природе и происхождении биологической эволюции
Логика случая. О природе и происхождении биологической эволюции

В этой амбициозной книге Евгений Кунин освещает переплетение случайного и закономерного, лежащих в основе самой сути жизни. В попытке достичь более глубокого понимания взаимного влияния случайности и необходимости, двигающих вперед биологическую эволюцию, Кунин сводит воедино новые данные и концепции, намечая при этом дорогу, ведущую за пределы синтетической теории эволюции. Он интерпретирует эволюцию как стохастический процесс, основанный на заранее непредвиденных обстоятельствах, ограниченный необходимостью поддержки клеточной организации и направляемый процессом адаптации. Для поддержки своих выводов он объединяет между собой множество концептуальных идей: сравнительную геномику, проливающую свет на предковые формы; новое понимание шаблонов, способов и непредсказуемости процесса эволюции; достижения в изучении экспрессии генов, распространенности белков и других фенотипических молекулярных характеристик; применение методов статистической физики для изучения генов и геномов и новый взгляд на вероятность самопроизвольного появления жизни, порождаемый современной космологией.Логика случая демонстрирует, что то понимание эволюции, которое было выработано наукой XX века, является устаревшим и неполным, и обрисовывает фундаментально новый подход — вызывающий, иногда противоречивый, но всегда основанный на твердых научных знаниях.

Евгений Викторович Кунин

Биология, биофизика, биохимия / Биология / Образование и наука