Рис. 8.1. Увеличение плотности энергии: чем старше Вселенная, тем сложнее развитые системы (
Эрик Чейссон, астрофизик из Гарвардско-Смитсоновского центра астрофизики (Кембридж, штат Массачусетс), выдвинул идею плотности потоков энергии – меры того, сколько энергии протекает через каждый грамм живой системы в секунду. Несмотря на свою впечатляющую мощность, звезда, например, имеет куда меньшую плотность потоков энергии (2 эрга на грамм в секунду), тогда как данный показатель у комнатного растения находится в пределах 3000–6000 эргов на грамм в секунду. Это явно нарушает законы логики. Но затем вы вспоминаете, что звезды – это просто газовые шарики.
Наиболее комфортно люди чувствуют себя при базовой плотности потоков энергии в 20 000 эргов на грамм в секунду. Тем же методом можно измерить и общество. Чейссон подсчитал, что средняя плотность потоков энергии в обществе охотников-собирателей составляет 40 000 эргов на грамм в секунду, а технологические общества пользуются 2 миллионами эргов на грамм в секунду.
Чейссон уверен, что плотность потоков энергии является универсальной мерой сложности всех упорядоченных систем – от планет и звезд до животных и обществ. Кроме того, в графике зависимости плотности потоков энергии упорядоченных систем от времени их первого появления в истории Вселенной кривая стремится вверх. А это указывает на общее увеличение сложности с течением времени (см. рис. 8.1).
Второй аргумент касается термодинамики. На первый взгляд, второй закон термодинамики – это мутное дело. Вроде как он гласит, что увеличение беспорядочности неизбежно и необратимо, а во Вселенной истощаются запасы энергии, необходимой для создания и поддержания таких сложных сущностей, как живые существа.
Буквальное прочтение этого закона намекает на то, что восхождение жизни крайне маловероятно. Однако после детальных прочтений закона можно утверждать, что локальное увеличение сложности не просто разрешено законом, но и необходимо, а порядок может возникать – и возникает! – спонтанно из хаоса.
Физик Дж. Мигель Руби из Барселонского университета (Испания) считает, что, строго говоря, второй закон термодинамики применим только к равновесным системам, то есть к состоянию, в котором ничего не меняется. Это условие редко присутствует во Вселенной. Например, Земля нагревается Солнцем, что создает на ее поверхности градиенты потенциала. Там, где присутствуют градиенты потенциала, могут возникать очаги сложности, даже если сама система в целом находится в полной беспорядочности. Эти очаги готовят плацдарм для дальнейшего усложнения системы. Таким образом, градиенты потенциала создают некую лазейку во втором законе термодинамики, и эта лазейка помогает жизни возникать и развиваться.
Аргумент номер три – конвергентная эволюция, которая предлагает взглянуть на аргумент Гулда под другим углом и допустить, что лента жизни действительно перезаписывалась много раз. По крайней мере, частично. Очень часто совершенно разные виды, обитающие в идентичных условиях, развивались обособленно и похожими способами.
В своей книге «Чего хотят технологии» (Viking Press, 2010) Кевин Келли, главный редактор журнала
Еще одним конвергентным свойством можно считать интеллект. Никола Клэйтон, профессор сравнительного восприятия из Кембриджского университета, и Натан Эмери, когнитивный биолог из Лондонского университета королевы Марии, утверждают, что, несмотря на то, что приматы и вороны сильно отличаются друг от друга на эволюционном древе и имеют совершенно разные структуры мозга, они смогли обособленно развить в себе множество схожих видов познания, включая использование инструментов, обман и сложные социальные иерархии. Основная мысль, опять же, сводится к тому, что интеллект всегда проявляется в благоприятных условиях.