Примерно такие же пессимистические комментарии сопровождали и реализацию проекта «Геном человека». Проект длился около 15 лет, за первую половину этого срока был проанализирован лишь 1 % генома, и критики указывали на невозможность повышения скорости секвенирования генома без нарушения тонких генетических структур. Однако благодаря экспоненциальному росту памяти, а также показателя цены — производительности через семь лет проект был завершен. Проект по обратному проектированию человеческого мозга продвигается аналогичным образом. Например, еще совсем недавно мы получили возможность с помощью неинвазивных методов сканирования в реальном времени наблюдать за тем, как образуются и возбуждаются отдельные контакты между нейронами. Многое из того, о чем я рассказывал выше, стало возможно совсем недавно благодаря подобным достижениям.
Аллен описывает мою идею об обратном проектировании человеческого мозга просто как сканирование мозга для понимания его тонкой структуры с последующей симуляцией всего мозга «вверх дном» без детального понимания его методов обработки информации. Но я предлагаю совсем другое. Нам действительно нужно подробно изучить, как работают отдельные типы нейронов, а затем собрать информацию о соединении функциональных модулей. А дальше функциональные методы, выведенные на основе этих данных, будут направлять развитие разумных систем. Грубо говоря, мы ищем биологические методы, способные ускорить исследования в сфере ИИ, которые пока во многом продвигаются без серьезного прорыва в понимании того, как аналогичную функцию выполняет мозг. На основе собственного опыта по распознаванию речи могу сказать, что работа сильно продвинулась, когда мы поняли, как мозг подготавливает и трансформирует звуковую информацию.
Дифференцировка повторяющихся структур мозга реализуется в процессе обучения и приобретения опыта. При сегодняшнем положении дел в сфере ИИ компьютерные системы тоже могут учиться на собственном опыте. Самодвижущиеся машины Google обучаются на своем водительском опыте, а также на данных машин Google, управляемых людьми. Ватсон получил большую часть информации за счет самостоятельного чтения. Интересно отметить, что математические принципы методов, заложенных в основу функционирования систем ИИ, очень близки соответствующим принципам функционирования новой коры.
Еще одно часто высказываемое возражение против возможности создания «сильного» ИИ (искусственного интеллекта на уровне человеческого разума и выше) заключается в том, что человеческий мозг активно использует аналоговые методы, а цифровые методы не могут воспроизводить плавные изменения параметров, доступные для воспроизведения аналоговыми методами. Это верно, что с помощью одного бита информации нельзя описать сложную зависимость, однако многобитные слова легко отражают множество значений, причем с любой степенью точности. Это постоянно происходит в цифровых компьютерах. А вот точность аналоговой информации в мозге (например, синаптический потенциал) составляет лишь один уровень из 256 возможных, которые могут быть представлены 8 битами информации.
В девятой главе я приводил доводы Роджера Пенроуза и Стюарта Хамероффа, касающиеся микротрубочек и квантовых вычислений. Вспомните, они утверждают, что микротрубочки нейронов осуществляют квантовые вычисления, а в компьютерных системах этого добиться нельзя. В этом заключается принципиальное отличие и, по-видимому, превосходство человеческого мозга. Я прокомментировал, что пока нет никаких доказательств того, что микротрубочки нейронов осуществляют квантовые вычисления. Человек на самом деле очень плохо решает такие задачи, которые не представляют никакой сложности для квантовых компьютеров (например, факторизация больших чисел). Но, если идеи Пенроуза и Хамероффа окажутся верны, ничто не мешает нам использовать квантовые вычисления в наших компьютерах.
Джон Серль знаменит, в частности, тем, что придумал мысленный эксперимент, называемый «китайская комната» (я подробно описывал его в книге «Сингулярность уже близка»[177]). Если говорить кратко, речь идет о человеке, который в письменном виде получает вопросы на китайском языке и отвечает на них. Для этого он пользуется сложной книгой правил. Серль утверждает, что человек не знает китайского языка и действует «неосознанно» (то есть не понимает смысла ни вопроса, ни ответа), хотя и отвечает на вопросы по-китайски. Серль сравнивает эту ситуацию с компьютером и приходит к выводу, что компьютер, который отвечает на вопросы по-китайски (и проходит тест Тьюринга на китайском языке), как и человек в китайской комнате, по-настоящему не понимает языка и не осознаёт, что делает.