Читаем Эволюция разума. Как расширение возможностей нашего разума позволит решить многие мировые проблемы полностью

Со временем нейронная сеть организуется таким образом, что может выдавать правильные ответы безо всякой подсказки. Эксперименты показывают, что нейронные сети могут обучаться даже у ненадежных учителей. Если учитель вносит исправления лишь в 60 % случаев, обучающаяся нейронная сеть все равно выучит урок так, что точность ответов приблизится к 100 %.

Однако достаточно скоро стало очевидно, что Perception может усвоить лишь ограниченный объем материала. Когда я посетил профессора Розенблатта в 1964 г., я попытался слегка изменить входные данные. Система была натренирована на распознавание печатных букв и делала это достаточно точно. Она довольно хорошо выполняла задачу самоассоциации (узнавала букву, если я закрывал ее часть), но не справлялась с инвариантностью (путалась при изменении размера буквы или шрифта).

Во второй половине 1960-х гг. нейронные сети стали невероятно популярными, и «коннекционизму» была посвящена как минимум половина исследований в области искусственного интеллекта. Между тем, более традиционный подход к созданию искусственного интеллекта состоял в попытках программирования решений специфических задач, таких как распознавание инвариантных свойств печатных букв.

В том же 1964 г. я посетил Марвина Минского, одного из основоположников исследований в области искусственного интеллекта. Хотя он сам выполнил несколько пионерских исследований по изучению нейронных сетей еще в 1950-х гг., он был недоволен активным развитием исследований в этом направлении. Считалось, что нейронные сети не нуждаются в программировании, поскольку обучаются решать задачи самостоятельно. В 1965 г. я поступил в Массачусетский технологический институт. Минский был моим научным руководителем, и я разделил его скептицизм в отношении идеи коннекционизма.

В 1969 г. Минский и Сеймур Пейперт — основатели лаборатории искусственного интеллекта при Массачусетском технологическом институте — написали книгу Perceptrons[98], в которой излагалась проблема персептрона, заключавшаяся в том, что такие персептроны, как Mark 1, не способны определить является ом изображение связанным. Эта книга вызвала бурю гнева. Человек может очень легко определить, является ли образ цельным (связанным), и для компьютера эта задача не представляет никакой сложности. Тот факт, что персептроны не могут этого сделать, многими был воспринят как полный провал.

Суть книги, однако, интерпретировалась шире, чем подразумевали авторы. Теорема Минского и Пейперта применима только к определенному типу нейросетей, называемых упреждающими сетями (к которым, в частности, относится персептрон Розенблатта), но другие типы нейронных сетей не имеют этого ограничения.

И все же книга отчасти способствовала ослаблению интереса к нейронным сетям в 1970-х гг. Исследования возобновились в 1980-х гг. в попытках использовать «более реалистичные модели» биологических нейронов и избежать ограничений, накладываемых теоремой Минского — Пейперта. Тем не менее способность новой коры решать ключевую проблему инвариантности по-прежнему не поддавалась воспроизведению в рамках коннекционизма.

Два изображения с обложки книги «Перцептроны» (авторы Марвин Мински и Сеймур Паперт). Верхнее изображение: неподключенный образ (темный участок состоит из двух разъединенных частей. Внизу: образ подключенный.

Разреженное кодирование: векторное квантование

В начале 1980-х гг. я начал заниматься проектом, посвященным другой классической проблеме распознавания образов — пониманию человеческой речи. Сначала мы использовали классический подход, заключающийся в прямом программировании знаний о фундаментальных единицах речи, называемых фонемами, и лингвистических правилах связывания отдельных фонем в слова и фразы. Каждая фонема характеризуется определенными частотными параметрами. Например, мы знаем, что такие гласные, как «и» и «а», характеризуются определенными резонансными частотами, называемыми формантами, причем каждой фонеме соответствует определенное соотношение формант. Свистящие звуки, как [з] и [с], характеризуются шумовым импульсом, охватывающим несколько частот.

Спектр трех гласных звуков. Слева направо: звук [i], как в слове «appreciate», [и], как в «acoustic», и [а], как в «ah». По оси Y отложены звуковые частоты. Чем темнее полосы, тем больше энергии соответствует этой частоте.


Мы регистрировали речь в виде звуковых волн, которые затем конвертировали в частотные полосы, используя частотные фильтры. Результат такой трансформации (спректрограмма) выглядит следующим образом.

Фильтры имитируют функцию улитки человеческого уха на начальном этапе биологического процесса восприятия звука. Компьютерная программа сперва идентифицировала фонемы на основании распознанных частот, а затем на основании характерных последовательностей фонем идентифицировала слова.

Перейти на страницу:

Все книги серии Civiliзация

Похожие книги