В нашем головном мозге миллиарды нейронов, но что такое нейроны? Просто клетки. Пока между нейронами не образуются связи, мозг не обладает никакими знаниями. Все, что мы знаем, все, что мы есть, зависит от того, как связываются наши нейроны.
Для создания разума будем основываться на тех рассуждениях, которые я привел выше. Начнем с построения распознающего модуля, отвечающего всем необходимым требованиям. Далее создадим множество копий этого модуля — столько, сколько позволяют возможности компьютеров. Каждый модуль рассчитывает вероятность распознавания соответствующего образа. При этом он учитывает наблюдаемую величину каждого входного сигнала и соотносит ее с усвоенной им величиной и ее возможной вариабельностью. Если рассчитанная величина сигнала превосходит пороговое значение, распознающий модуль активирует соответствующий аксон. Пороговое значение и параметры, учитываемые при вычислении вероятности присутствия образа, относятся к числу параметров, которые оптимизируются с помощью генетического алгоритма. Поскольку для распознавания образа не требуется активизации всех входных сигналов, это обеспечивает самоассоциативное распознавание (то есть распознавание всего образа на основании отдельных частей). Также следует учесть возможность ингибирующих сигналов (означающих сниженную вероятность присутствия образа).
В результате распознавания образа распознающий модуль посылает сигнал дальше по аксону. Этот аксон связан с одним или несколькими другими распознающими модулями на более высоком понятийном уровне. Все распознающие модули следующего уровня, к которым приходит сигнал, воспринимают этот образ как входной сигнал. Когда б
Распознающие модули отвечают за связывание с другими распознающими модулями выше и ниже по иерархии. Заметим, что все эти контакты в компьютерном варианте действуют через виртуальные связи (которые, как в виртуальных сетях, представляют собой просто указатели), а не через реальные контакты. Данная система гораздо более гибкая, чем в биологическом мозге. В человеческом мозге новые образы должны быть «приписаны» к реальным распознающим модулям, а между аксонами и дендритами должны образовываться реальные связи. Обычно для этого используется существующая физическая связь, имеющая отношение к данному образу, и за счет дополнительного роста аксонов и дендритов осуществляется новое взаимодействие.
Еще один механизм в биологической новой коре млекопитающих заключается в постепенной ликвидации неиспользуемых нервных связей. Для того чтобы перенастроить распознающие модули новой коры на восприятие каких-то новых образов, необходима физическая реконфигурация связей. И вновь в компьютерном варианте эта задача решается гораздо проще. Мы просто присваиваем новым распознающим модулям новую информацию и программируем новые связи. Если цифровой коре нужно перенастроить ресурсы памяти на новый набор образов, она освобождает распознающие модули от старых образов и задает новые настройки. Такой своеобразный «сбор мусора» и перераспределение памяти являются стандартным свойством многих компьютерных систем. В цифровом мозге нам также следует создать резервную копию старых воспоминаний, прежде чем удалить их из активной коры, что в нашем биологическом мозге мы сделать не в состоянии.
Существует несколько математических методов, которые можно использовать для создания самоорганизующихся иерархических распознающих модулей. Лично я по нескольким причинам предпочитаю метод скрытых иерархических моделей Маркова. Я уже несколько десятилетий пользуюсь этим методом, начиная с самых первых систем распознавания речи и понимания разговорного языка, созданных в 1980-х гг. Да и если говорить в общем, ученые, занятые распознаванием образов, имеют больше опыта в применении данного метода, чем каких-либо других. Этот метод или аналогичные ему математические методы также широко применяются для понимания разговорной речи.