Я понимаю, что вы чувствуете некоторую неудовлетворенность от последних абзацев. Вместо раскрытия великой тайны — что же такое Разум? –говорится всего лишь о способности нервной системы к изменению своей структуры. Сама по себе такая способность еще не делает нервную систему разумной — но без нее разум невозможен в принципе. А вот чтобы понять, что же такое
А сейчас вернемся на миг в первую главу, как помните в СУ-3 ОКМ социума хранилась на внешнем носителе и включала в себя Информацию являющуюся производной памяти людей её готовившей. Таким образом, через эту систему люди обмениваются опытом, что можно, а что нельзя, что следует выполнять и каким образом. Т.е. идёт обмен сознанием одного человека с сознанием другого через неодушевлённый носитель. Нет, разумеется, СУ-3 не является разумной, хотя бы в силу того, что Законы не пишутся и не модифицируются сами, но память у такого социального организма определённо есть.
II. Нейрон — основной элемент биологических систем управления.
Как известно, в человеческом мозге насчитывается примерно триллион нейронов. Вообще говоря, не так уж и много — если считать нейрон за байт, можно их все записать на 1000Gb диск за какую-то тысячу долларов. Однако возможности человеческого мозга несколько превышают возможности «Пентиума» со 1000-гигабайтным винтом. Связано это с тем обстоятельством, что нейрон — это
Чтобы в этом убедиться, достаточно посмотреть на рисунок:
Рис. 26. Примерно так выглядят естественные нейроны.
Биологически нейрон представляет собой обычную (точнее, не совсем обычную) клетку, специализированную на передаче управляющих импульсов (не только электрических). В составе типичного нейрона обычно выделяют:
- дендриты
— многочисленные короткие отростки, через которые в нейрон поступает- аксон
— как правило,- синапсы
, или синаптические окончания — участки «стыковки» дендритов и аксонов, непосредственно обеспечивающие передачу нервных сигналов от клетки к клетке.Передача сигналов в нервной системе осуществляется совсем не так, как в микропроцессоре. Нейрон порождает электрические импульсы, которые проходят по аксону и возбуждают его синапсы. Параметры таких импульсов едины для всех типов нейронов — длительность единичного «тика» 1мс, амплитуда 100мВ, минимальная пауза между импульсами порядка 4мс (можно сказать, что наша биологическая нейросеть работает на частоте в 200Гц). Получив импульс, синапсы аксона начинают выделять в окружающую среду специальные молекулы — нейротрансмиттеры
. Попадая на синапсы дендритов, эти нейротрансмиттеры (всего их около 30 разновидностей) могут оказывать на них как возбуждающее, так и тормозящее действие. Таким образом, одиночный импульс, прошедший по аксону, может нести в себе гораздо больше информации, чем привычное для программиста «машинное слово». Кроме того, «понимание» этого импульса дендритами зависит еще и отИтак, нейрон сам по себе является достаточно сложным устройством (фактически, это целый ионный микрокомпьютер размером с клетку). Представлять его в виде примитивного сумматора получаемых дендритами импульсов можно было разве что на заре компьютерной эры:
Рис. 27. Первый искусственный нейрон — персептрон Маккалока-Питтса. 1946 год.
Сегодня мы уже хорошо понимаем, что между естественным нейроном и его самыми изощренными реализациями (самая свежая — STANNO, Self-Training Artificial Neural Network Object), основанными на подобных формальных моделях, лежит пропасть. И пропасть эта заключается прежде всего в том, что формальные нейроны остаются
III. Жизненная цель нейрона.
Сначала — несколько не общеизвестных фактов. Мозг человека, составляя 2% от массы тела, потребляет 20% вдыхаемого кислорода. На питание мозга постоянно расходуется 20Вт мощности — вне зависимости от того, спит человек или бодрствует (есть данные, что во сне энергопотребление мозга даже повышается). Фактически, мозг — это самый прожорливый орган нашего тела.
Куда же уходит вся эта прорва энергии? Нетрудно догадаться, куда: на