Вначале Кеплер пытался понять движение Марса, следу я старому принципу кругового движения. После года борьбы с кругами и эпициклами он пришел к выводу, что с их помощью нельзя объяснить движение Марса. Фактически все упиралось в небольшое отклонение в 8 упрямых минут дуги, которые Кеплер никак не мог объяснить с помощью кругов. Кеплер ясно понимал, насколько важно проверить теоретические выводы с помощью точных наблюдений. Точность Тихо, равная 2', была выше, чем отклонение. Кеплер отмечал, что «эти 8 минут дуги, которые я не могу отбросить, приведут к полному изменению астрономии».
Затем, вопреки вековой традиции, он использовал эллиптическую орбиту для объяснения движения Марса. Эллипсы были известны еще со времен Аполлония (см. главу 3), изучавшего эти кривые наряду с другими коническими сечениями — гиперболой и параболой. Любопытно, что он же был и автором теории эпициклов в движении планет. Ему, как и всем остальным до Кеплера, не приходило в голову, что планеты могут двигаться по эллипсам. Эллипс является вытянутой замкнутой орбитой, тогда как окружность — лишь частный невытянутый вариант эллипса.
Работа всей жизни Кеплера выразилась в трех законах. Два первых появились в его книге «Новая астрономия» (1609), а третий закон — в книге «Гармония мира» (1619). Представленный выше первый закон формулировался так.
1. Планеты обращаются вокруг Солнца по эллиптическим орбитам, причем в одном из фокусов эллипса расположено Солнце.
На самом деле Кеплер открыл свой второй закон раньше первого. Он обнаружил, что Земля медленнее движется по своей орбите, когда она дальше от Солнца, и быстрее — когда ближе. Скорость перемещения по траектории не остается постоянной при движении по эллипсу вокруг Солнца, а ведет себя так:
2. Радиус-вектор, соединяющий Солнце с планетой, заметает одинаковые площади за одинаковое время.
Чтобы понять второй закон, представим заметаемую область в виде треугольника с вершиной у Солнца и основанием в виде короткой дуги, по которой планета перемещается по орбите за единицу времени. Треугольник будет узким и вытянутым, когда планета вдали от Солнца, и широким — когда она близко, но площади обоих треугольников будут равны (рис. 6.5).
Третий закон Кеплера сравнивает размеры орбит и орбитальные периоды любых двух планет. Обычно их сравнивают с Землей, поэтому для любой планеты используют в качестве единицы времени земной год, а в качестве единицы длины — расстояние от Земли до Солнца (а. е.). Размер орбиты (а) равен половине большой оси эллипса. Размеры орбит и продолжительность полного оборота планеты по орбите (Р) связаны следующим образом:
3. Квадраты орбитальных периодов планет пропорциональны кубам полуосей их орбит.
Интересно посмотреть, с какой точностью Кеплер мог проверить свой третий закон, используя имеющиеся значения, приведенные в «Гармонии мира». В табл. 6.1 верхний ряд представляет квадрат орбитального периода Р для каждой планеты: Р
2= Р х Р (единица измерения — год). А нижний ряд точно так же представляет кубы «а» — среднего расстояния от Солнца: а 3= ах ах а (в единицах среднего расстояния Земли = 1 а. е.). Соответствующие наблюдательные ошибки в верхнем и нижнем рядах практически одинаковы.Кеплер работал в Праге до 1612 года. Это было самое плодотворное время в его карьере, несмотря на непрерывные экономические проблемы и личную трагедию (умерли его жена и маленький сын). В дополнение к «Новой астрономии» он опубликовал три книги по оптике (около четверти из опубликованных им работ посвящены свету и оптике).