Следующий шаг сделал Эйнштейн, который показал, что квантование энергии в порции связано не только с колебаниями в атоме, но и с самим электромагнитным излучением. Доказательством существования квантов света (фотонов) стало объяснение, которое Эйнштейн дал фотоэлектрическому эффекту — испусканию металлом электронов под действием падающего на него света. Это явление в 1880-х годах неожиданно открыл Генрих Герц во время экспериментов с радиоволнами. Ультрафиолетовые фотоны с высокой энергией могут выбивать электроны из металла, даже если свет имеет очень малую интенсивность. Даже один высокоэнергичный квант высокочастотного излучения способен совершить работу по «выдергиванию» электрона из металла. Но отдельные низкоэнергетичные кванты красного или инфракрасного низкочастотного излучения (даже если таких квантов много при ярком освещении) не могут выбить электрон. Грубый аналог этого явления — бросок в лицо пригоршни песка или тяжелого камня; ясно, что последствия этих ударов будут разными.
Свет состоит из своего рода частиц, как полагал Ньютон, но нельзя игнорировать и признаки волновой природы света. Наш повседневный опыт затрудняет понимание этой двойственной, «корпускулярно-волновой» природы света и вообще электромагнитного излучения. Мы по привычке связываем волны и частицы с совершенно разными явлениями. Но почему-то в масштабе атомов оба этих понятия ассоциируются с одними и теми же явлениями. Бесполезно пытаться представить себе нечто, одновременно являющееся и волной, и частицей.
Еще больше усложнил ситуацию французский герцог и физик Луи де Бройль (1892–1987), который в 1924 году предположил, что электрон является не только частицей, но и волной. В 1922 ГОДУ он защитил диссертацию под названием «Исследования в области квантовой теории». В ней была изложена его теория электронных волн. Вскоре это подтвердилось экспериментально: электроны во многих случаях ведут себя как световые волны. Например, уже описанная выше интерференция, когда волны в одной и той же фазе колебаний усиливают друг друга, а в противофазе — гасят, проявилась в экспериментах с использованием пучков электронов, падающих на кристаллы. Волны де Бройля регулярно используются в электронных микроскопах для получения более резкого изображения, чем в оптике, поскольку длина волны у электронов короче, чем у света.
Датский физик Нильс Бор применил новую квантовую концепцию к атому. Бор родился в Копенгагене, в богатой семье. В юности он был известным футболистом: вместе с братом играл в лучших национальных командах. Бор учился в Копенгагенском университете и защитил диссертацию в 1911 году. Поворотной точкой в его карьере стала работа в Англии после защиты диссертации. Вначале Бор поехал в Кембридж, но после знакомства с Резерфордом решил переехать в Манчестер. Это было как раз то время, когда Резерфорд подтвердил своими экспериментами с альфа-частицами «модель солнечной системы» для атома.
Все атомы одного элемента одинаковы, однако простая модель Солнечной системы не указывает точно, где должны располагаться электроны в этих атомах. В самой Солнечной системе нет жестких физических ограничений того, на каких расстояниях от Солнца могут располагаться планеты. Скажем, орбита Земли могла бы быть немного больше или немного меньше, чем она есть. И еще одна проблема этой модели: обращающийся по орбите электрон похож на колеблющийся заряд в антенне и поэтому должен излучать энергию с частотой своего орбитального движения. Но, в отличие от антенны радиостанции, у электрона нет внешнего источника энергии. В конце концов потеря энергии должна привести к падению электрона на ядро атома.
Именно над этими проблемами Бор размышлял в Манчестере. Только через два года он смог найти решение. Один из друзей уговорил его посмотреть на формулу спектральных линий водорода, которые Бальмер открыл на несколько десятков лет ранее. «Когда я увидел формулу, то сразу же все понял», — сказал Бор год спустя. Он предположил, что в атоме водорода электрон находится на орбите вокруг протона и их связывает электрическое притяжение. По мнению Бора, в отличие от планет Солнечной системы, у всех атомов данного элемента возможны только определенные радиусы орбит. Во всем остальном электрон может подчиняться законам механики.
Другим отклонением от стандартной физики было требование Бора, чтобы электрон, двигаясь по разрешенной орбите, не излучал. Это противоречит теории электромагнитного излучения. Но Бор связал излучение с другим явлением — с изменением орбиты электрона. Каждая круговая орбита электрона обладает определенной энергией, которая тем больше, чем дальше от протона находится эта орбита. Электрон может перепрыгнуть с верхней (то есть более далекой) орбиты на нижнюю, излучив при этом фотон, энергия которого соответствует разности энергий этих двух орбит. И наоборот, электрон может захватить пролетающий мимо фотон с энергией, необходимой для его перехода на более высокую орбиту.