Единственным путем, на котором такое сокрытие крупных мутаций и их уродующего воздействия во взрослом организме является неотения, т. е. сбрасывание периода взрослого развития и обретение половой зрелости и взрослого состояния в инфантильный период развития организмов. Но неотения – довольно редкое явление, присущее весьма примитивным видам, и распространять ее на все процессы видообразования по меньшей мере некорректно. К тому же, неотения не приводит к прогрессу в развитии. Как и любой геноцентрический мутационизм, подобная точки зрения заводит в тупик и не может способствовать зарождению какой-либо исследовательской программы, которая могла бы не только проверить подобные умозрительные предположения, но и способствовать дальнейшему продвижению теории видообразовательных процессов.
Для нас очевидно, что изучать видообразование без исследования преобразований мобилизационных структур организмов и их генетических систем под влиянием осуществляемой ими биологической работы – значит вечно оставаться в заколдованном кругу геноцентрических умозрений, сводя живую жизнь к физико-химическим процессам в молекулах ДНК. Порочность подобных взглядов, их тупиковость становится все более очевидной с каждым новым шагом в развитии самой генетики. Геноцентрические установки мышления теоретиков мешают видеть очевидное, побуждают трактовать его как некую видимость, тогда как на самом деле видимостью является геноцентрический характер видообразовательных преобразований.
Нельзя забывать о том, что органеллы и ядра клеток являются органами целостного организма, а не техническими устройствами, развивающимися совершенно независимо от него. Это – главная методологическая ошибка представителей всех форм геноцентризма, продиктованная давлением на умы абсолютизацией успехов генетики XX века и естественным отбором научных концепций в их постоянной борьбе за существование. Это и вызвало прискорбное и для ученых недопустимое забвение того, что генетические процессы в ядрах и органеллах клеток не абсолютно отрезаны вейсмановским барьером от работы целостного организма, что они регулируются и корректируются через коммуникационные связи клеток сигналами, поступающими от других клеток в процессах межклеточных взаимодействий. У растений эти процессы совершаются посредством вещественных субстратов, что обеспечивает чувствительность и раздражимость. У животных же, даже самых примитивных, они происходят не только через вещественные субстраты – ферменты – но и в виде потоков информации, поступающих по проводникам электричества – нейронным сетям.
Физиологами давно замечено сходство в этом отношении нейронных сетей с человеческими техническими линиями связи, но геноцентрическая парадигма, оставаясь глухой и слепой к давлению межклеточных взаимодействий на генетические процессы, не допускает их влияния на технику преобразований ДНК.
Весьма характерно, что, оставаясь в своих теоретических воззрениях в рамках геноцентрической парадигмы, авторы работы приходят к пониманию ведущей роли нейронных сетей в эволюции организмов. Анализируя собственные экспериментальные данные о радиорезистентности геномов клеток различных организмов и сопоставляя их с данными о размерах геномов этих организмов, авторы пришли к выводу, что эти данные отражают тенденцию крупнейших эволюционных преобразований генома в ходе прогрессивной эволюции (Там же, с. 201).
Эта тенденция заключается в повышении структурной сложности геномов при одновременном снижении их информационной емкости, что позволяет сохранять надежность функционирования генетического аппарата. Тем самым происходит оптимизация размеров геномов посредством сбрасывания генетического материала, который оказывался нейтральным и не участвовал в реализации инновационной генетической программы (Там же, с. 203). По мере сокращения информационного балласта геномов, полагают авторы работы, происходит повышение информационной емкости нейронных сетей при усложнении нервной системы и соответствующем повышении ее эволюционной роли.
«По грубым оценкам, – отмечают Б. Сарапульцев и С. Гераськин, – информация, хранящаяся в ДНК, по крайней мере, на два порядка меньше той, которая необходима для описания нейронных сетей в коре головного мозга человека. Не вызывает сомнений, что появление на арене жизни структурных ассоциаций нейронов резко повысило адаптивные возможности их обладателей и по сути перевело ход дальнейшей эволюции в плоскость естественного отбора нейронных сетей» (Там же, с. 199).