Наше Солнце зажглось около 4550 миллионов лет назад (Calder, 1989). Вначале оно было окружено кольцами газа и пыли, которые за счет столкновений и гравитационного притяжения коагулировали в планеты. Излучение Солнца отбросило легкие газы из внутренних газовых колец, и из оставшейся смеси тяжелых элементов сформировались каменистые планеты — Меркурий, Венера, Земля и Марс. В течение десятков миллионов лет космические столкновения продолжали наращивать массу небесных тел Солнечной системы. Около 4500 миллионов лет назад Земля столкнулась с объектом, по размерам сопоставимым с Марсом. Материал, выброшенный на орбиту в результате этого жестокого столкновения, стал основой для Луны. Столкновения продолжаются и по сей день, хотя их мощность и частота со временем снизились. «Рекорды» таких столкновений записаны на покрытой кратерами поверхности Луны. Активная геология Земли и слой атмосферы создают защиту от бомбардировки из космоса и затушевывают ее результаты. Химическая смесь веществ, получившихся в результате вулканической активности и упавших с неба (в виде комет и метеоров), стала причиной интересных явлений на новорожденной Земле.
Активная химическая среда молодой Земли была бы смертельно ядовита для любой из ныне существующих форм жизни (Calder, 1983). Атмосфера состояла из метана, аммиака и водяного пара при практически полном отсутствии свободного кислорода. Вулканы постоянно выбрасывали на поверхность Земли едкие соединения (Dawkins, 1989).
Стабильные молекулярные соединения сохранялись, а нестабильные — исчезали (Dawkins, 1989). Цепи молекул, способных к удвоению (репликации), стали встречаться чаще тех, которые не имели таких свойств. Цепи, способные удваиваться быстро и с хорошей точностью, преобладали над теми, которые удваивались медленнее и с «ошибками». Среди всех элементов, рожденных звездами, наибольшими возможностями формирования сложных и замысловатых молекул обладает углерод. В 1950-х годах Миллер и Арей продемонстрировали, что органические вещества, из которых состоят живые существа, с большой вероятностью могли возникать при том типе атмосферы, которая существовала на Земле четыре с лишним миллиарда лет назад. Источниками энергии в этих и более поздних экспериментах были электричество и ультрафиолетовое излучение, моделировавшие грозы и солнечную радиацию на ранней, еще безжизненной Земле. Однако хотя в лабораторных экспериментах, имитировавших условия тогдашней Земли, удалось получить все типы нуклеиновых оснований для ДНК и РНК, ни в одном эксперименте не произошло объединения этих компонентов в высокоорганизованные, сложные молекулы, способные нести информацию о синтезе белка. Несмотря на неудачи биохимиков в попытках создания простейших форм жизни в лабораторных условиях, большинство ученых согласны с тем, что, учитывая химически активную среду новорожденной Земли и повторявшийся бессчетное число раз естественный отбор, возникновение живого из неживого — закономерное и вполне вероятное явление.
Жизнь существует на Земле, по меньшей мере, 4 миллиарда лет. В скалах, имеющих возраст около 3800 миллионов лет, найдены древние бактерии (Calder, 1983). 3500 миллионов лет назад фотосинтетические бактерии сформировали на отмелях колонии, называемые «строматолитами». У этих организмов развилась способность использовать солнечный свет для превращения двуокиси углерода (углекислого газа) и воды в энергию химических связей с выделением кислорода как побочного продукта реакции. По мере распространения таких фотосинтезирующих организмов в течение сотен миллионов лет содержание кислорода в атмосфере постепенно повышалось. Для анаэробных бактерий, на тот момент основной жизненной формы на Земле, кислород был смертельно ядовит. И бактерии либо скрывались в недоступных для воздуха местах, либо подверглись радикальным адаптивным изменениям. В настоящее время анаэробные формы жизни все еще существуют. Они обитают глубоко в почве и в других местах, куда не проникает атмосферный воздух. Но основная часть живых организмов Земли (включая людей) ведут свое происхождение от организмов, адаптировавшихся к атмосфере, богатой кислородом. Предки эукариот (клеток с ядерной мембраной) решили проблему с кислородом наиболее рациональным с эволюционной точки зрения путем (Kimble, 1994). У них не произошло изменения собственной физиологии. Вместо этого они вступили в симбиотические отношения со значительно более мелкими бактериями, у которых уже существовали биохимические механизмы метаболизма кислорода. От этих утилизирующих кислород бактерий произошли митохондрии, которые обитают в наших клетках. Митохондрии сохранили независимость размножения от вмещающих их клеток, несмотря на 1800 миллионов лет совместной эволюции. Функция этих удачно интегрированных органелл — утилизация кислорода с целью получения энергии. Митохондрии жизненно важны для функционирования эукариотических клеток.