Открытие неэвклидовых геометрий оживило также аксиоматический метод. Эвклидовская аксиоматическая система во все времена служила образцом, несмотря на это в течение 2000 лет не возникло ни одной другой такой системы. И тем плодотворнее дйствует аксиоматический метод в нашем столетии в математических и логических фундаментальных исследованиях. Новые дисциплины возникают и становятся аксиоматическими, среди них теория множеств, теория групп, топология, теория категорий. Становится ясным, что логика нуждается и способна к улучшениям (Больцано, Буль, Фреге). Связь логики и математики создаёт дальнейшие самостоятельные исследовательские области: математическую логику (Гильберт, Рассел, Уайтхед), теорию доказательства, математическую семантику (теорию моделей).
Исследования, в которых говорится о математических теориях называют метаматематикой. Также и метаматематика породила определённые теоретико-познавательные взгляды(2). Гёделевские результаты о полноте и неполноте формальных логических систем обозначили важные границы. Пост говорит поэтому о границах человеческих способностей математизирования, а Шольц (1969, 289, 367) называет гёделевские положения даже второй критикой чистого разума.
Новая постановка вопросов ведёт, наконец, к новой интерпретации характера математических теорий. Последние понимаются теперь как формальные системы, которые хотя и применимы к действительности, ничего о ней не говорят, они независимы от опыта и не могут быть поэтому доказаны или опровергнуты посредством опыта. От таких формальных систем не требуется, чтобы они были наглядными или интуитивно истинными, а только то, чтобы они были свободны от противоречий (Гильберт). Наглядность не есть критерий правильности математических теорий. Таким образом, математика не есть больше наука о пространстве и числе, а наука, описывающая формальные структуры посредством аксиоматических систем. "Логика и математика есть алфавит книги природы, но не сама книга " (Рассел). Математика во всяком случае не есть естествознание. Поэтому её можно характеризовать сегодня как науку о структурах(3).
Физика
Физика является наукой с далеко идущими притязаниями описать интерсубъективную действительность. Поэтому неудивительно, что теория науки важнейшие аргументы для нового осмысления получает от физических наук (как экспериментальных, так и теоретических).
Долгое время ньютоновская механика была недостижимым образцом для любой физической дисциплины. даже для любой естественной науки. Она определила первую «современную» физическую картину мира. С возникновением понятия поля во второй половине 19 столетия благодаря Фарадею, Максвеллу, Герцу исчезает, однако, надежда на возможность механического объяснения всех явлений. Однако подлинно глубокие новации происходят лишь в 20 столетии.
a. Открытие атомарной структуры материи имело значительные последствия для традиционного понятия субстанции.
b. Имеется не только мельчайшая составная чсть материи, атом, но также элементарный заряд (электрический элементарный квант).
c. Введение кванта действия (Планк 1900). обусловило дискретный характер процессов излучения и даже во всех переносах энергии. Также и энергия приобрела, таким образом «корпускулярную» структуру.
Специальная теория относительности (Эйнштейн)
d. Сигналы могут передаваться не быстрее скорости света. Каузальная связь двух событий возможна поэтому только тогда, когда может быть связана посредством светового сигнала. Дальнодействия нет.
e. Классические представления о пространстве, времени, одновременности были опрокинуты. Эти понятия релятивны соответствующей системе отсчёта.
f. Масса и энергия эквивалентны. Материя может превращаться в энергию и наоборот. Принцип сохранения энергии и массы по отдельности не действует. а только в сумме обеих.
g. Понятие субстанции поэтому должно быть вновь подвергнуто критике (ср. а).
h. Пространство и время превращаются в четырёхмерный пространственно-временной-континуум (Минковский 1908). Физические законы едины по отношению к этим четырём величинам.
Общая теория относительности и космология (Эйнштейн 1915)
i. Для описания физических процессов все системы отсчёта равноправны. Абсолютного пространства не существует.
j. Инерция, метрика и гравитация связаны друг с другом. Вблизи больших масс пространство неэвклидово.
k. Ньютоновская механика и его теория гравитации являются граничными случаями общей теории относительности.
l. Космология превращается в науку.
m. Представляется, что законы, которые подтвержаются нашим окружением, действуют также по отношению ко всему космосу, т. е. являются универсальными.
n. Космос имеет историю, возможно, начало и конец, во всяком случае, он подлежит развитию.
Квантовая теория (1926)
o. Дуализм волна- частица окончательно показал, что наглядность не является критерием правильности физических теорий.
p. Этот дуализм вновь разбивает понятие субстаннции (ср. а, g)
q. Принцип неопределённости устанавливает принципиальные границы применимости классических физических понятий.