"Только одно чувство-обоняние, иными словами, определение и обнаружение небольших примесей органического вещества, у животных более совершенно, чем у существующих приборов. Догнать обоняние собаки — одна из проблем физики будущего" — так сформулировал одну из сложнейших задач науки выдающийся советский ученый академик Петр Леонидович Капица.
За этой задачей стояло не просто стремление превзойти природу. Во многих областях современной техники — в электронике, радиотехнике, химии — требуются вещества уникальной
чистоты: в них на многие миллионы собственных атомов допускается присутствие лишь одного атома примесей. А на другом полюсе задачи проблемы здравоохранения, охраны окружающей среды. Как, например, бороться с ничтожными количествами химических веществ, которые выделяют в воздух и растения, и машины, и строительные материалы? Ведь именно эти вещества нередко срабатывают как спусковой крючок аллергических заболеваний, широко распространенных сейчас на нашей планете.
Путь к решению этой задачи открыл так называемый эффект электронного парамагнитного резонанса-ЭПР. Оказалось, что электронное облако атома изучаемого вещества можно «сплющить», наложив на него сильное магнитное поле. И тогда оно будет поглощать радиоволны только какой-то одной частоты, а другие будут проходить через него беспрепятственно. Иными словами, атомы как бы настраивались на прием определенной волны, как колебательный контур в радиоприемнике…
На этом эффекте и были созданы приборы, позволяющие обнаружить ничтожные примеси. В их камеру-резонатор помещали изучаемое вещество и облучали радиоволнами той длины, на которую были «настроены» атомы примесей. По тому, как в результате поглощения падала мощность излучения, и определялось их количество. Беда лишь в том, что этот метод позволял «ловить» примеси в виде отдельных атомов, в лучшем случае-двух- или трехатомных молекул. На более крупные образования его чувствительности уже не хватало. А большинство примесей, интересующих ученых и производственников, представляют собой многоатомные молекулы. Как научиться «опознавать» и их?
За решение этой задачи взялись сотрудники лаборатории химической радиоспектроскопии Института химической физики Академии наук СССР во
главе с профессором Я. Лебедевым. В качестве источника излучения они решили применить лазер, работающий на инфракрасных и субмиллиметровых волнах. Именно в этом диапазоне многоатомные молекулы заявили о себе, что называется, во весь голос. Лазерный спектрометр позволял точно оценить количество не только многоатомных молекул, но и радикалов химически активных «осколков».
— А потом возникла идея объединить преимущество обоих методов лазерного и электронного парамагнитного, — говорит профессор Я. Лебедев. — Она воплотилась в установке, которая позволяет не только определять количество атомов и молекул примеси, но и нагревать лучом лазера всю смесь, любой из ее компонентов или только поверхность вещества. В ней можно разрушать или «штопать» молекулы. И даже прямо воздействовать на химию процесса.
Чувствительность нового прибора фантастическая: он может «поймать» одну молекулу примеси, спрятавшуюся в миллиарде (!) молекул основного вещества. Такое не по силам даже собаке с ее прославленным нюхом.
ЗЕРКАЛА ВМЕСТО ЛУНЫ
Что ни говорите, а в темноте человек чувствует себя не очень уютно. Поэтому и горят миллионы ламп в ночное время всюду, где живут люди. Ученые предлагают использовать для ночного освещения городов зеркала, размещенные на спутниках. Эти спутники должны находиться на
ной орбите, то есть как бы висеть над определенным местом нашей планеты. Зеркала смогут отражать во много раз больше солнечного света, чем Луна. Размер этих зеркал чуть меньше километра в диаметре. С помощью ЭВМ будут управлять их наклоном и тем самым менять освещаемую площадь. Зеркала можно изготовить из пластмассы, покрытой алюминием, и выводить в сложенном виде на орбиту на борту космического корабля. После отделения от корабля зеркала раскроются как зонтики. Правда, перед тем, как приступить к осуществлению проекта, необходимо изучить возможные влияния такого освещения на человека и животных, чем сейчас и занимаются ученые.
ГЕМОГЛОБИНОВАЯ ГУБКА
Изобретены искусственные подводные легкие для получения из морской воды кислорода. Прибор, получивший название «гемоспандж» (в дословном переводе — "гемоглобиновая губка"), представляет собой полимер, пропитанный молекулами гемоглобина, то есть красного дыхательного пигмента крови, который связывает кислород и переносит его от органов дыхания к тканям. Гемоспандж, как и губка, обладает очень большой поверхностью, поэтому значительное количество гемоглобина приходит в соприкосновение с протекающей через прибор водой. Расчеты показывают, что труба диаметром около метра и длиною девять метров, наполненная гемоспанджем, может под водой обеспечить кислородом 150 человек.
АЛЮМИНИЙ ДЛЯ СЕЛА
Рассказывает академик А. Белов
ФАНТАСТИЧЕСКИЙ РОСТ