При вертикальном взлете гондолы устанавливаются в вертикальное положение, и все шесть двигателей создают вертикальную тягу. Одновременно с постепенным отклонением гондол в горизонтальное положение тяга подъемных двигателей в фюзеляже уменьшается по мере увеличения горизонтальной скорости постепенно, а после достижения скорости, при которой вес самолета воспринимается крылом, двигатели выключаются. При переходе к вертикальному режиму при посадке процесс работы двигателей повторяется в обратном порядке. При скорости 400 км/ч поднимается створка воздухозаборника сверху фюзеляжа и включаются подъемные ТРД, при скорости 305 км/ч гондолы поворачиваются на 45° и полностью на 90° при скорости 93 км/ч.
При взлете самолета с малым разбегом гондолы в начале разбега находятся в горизонтальном положении, затем поворачиваются, при этом создается вертикальная составляющая тяги, которая складывается с вертикальной тягой двигателей в фюзеляже. На форсированном режиме самолет мог взлетать с нагрузкой до 2000 кг.
По мнению конструкторов, такая система обеспечения вертикального взлета имеет следующие преимущества перед системой с отклонением реактивных сопел, как на СВВП «Харриер»: возможность использования форсажных камер, предназначенных для сверхзвукового полета, на режиме вертикального взлета; экономия веса; исключение потерь тяги, связанных с подводом струи газов к соплам; простота управления самолетом; более простая схема переходного режима. Кроме того, отсутствие маршевых двигателей в фюзеляже и соответствующих им систем облегчает проблему размещения топлива.
Топливо на самолете размещено в фюзеляже в двух баках, примыкающих к отсеку двигателей. Отмечалось, что большой запас топлива будет обеспечивать самолету большую дальность по сравнению с вертикально взлетающими истребителями, разрабатываемыми в соответствии с ТТТ НАТО MBR-3.
Система управления, разработанная фирмой «Даути Ротол», включает обычные аэродинамические поверхности управления, используемые в горизонтальном полете, и систему дифференциального изменения тяги двигателей на вертикальных и переходных режимах полета. При вертикальном положении гондол и работе всех двигателей вертикальное перемещение самолета регулируется с помощью обычного рычага управления двигателями. Изменение тяги для продольного и поперечного управления достигается перемещением ручки управления. Продольное управление осуществляется дифференциальным изменением тяги двигателей, установленных в фюзеляже и на концах крыла, поперечное управление – дифференциальным изменением тяги правой и левой пар двигателей, установленных на концах крыла, путевое управление – дифференциальным отклонением (на небольшой угол) правой и левой пар двигателей на концах крыла.
Управление изменением тяги при продольном и поперечном управлении связано с отклонением аэродинамических рулей. При повороте гондол в горизонтальное положение с увеличением горизонтальной скорости управление изменением тяги двигателей плавно переходит на систему управления аэродинамическими поверхностями.
Оборудование. Самолет оснащен автоматической трехканальной системой, обеспечивающей стабилизацию при вертикальном взлете, переходном режиме и в горизонтальном полете. В носовой части установлена штанга для размещения ПВД и датчиков.
Размеры:
размах крыла 6,61м
расстояние между осями гондол (6 м
длина фюзеляжа 15,7 м
высота самолета 4,13 м
Двигатели 6 ТРД Роллс-Ройс RB.145
взлетная тяга без форсажа (самолет VJ-101С-Х1) 6x1250 кгс
взлетная тяга с форсажем (самолет VJ-101С-Х2) 4x1650 кгс и 2x1250 кгс
Массы и нагрузки:
взлетная при вертикальном взлете
самолет VJ-101С-Х1 6 000 кг
самолет VJ-101C-X2 8 000 кг
Летные данные:
максимальная скорость соответствует
числу М = 1,08
VFW-Фоккер VAK-191B
Опытный вертикально взлетающий истребитель и разведчик