- И вы говорили с ним? - осторожно спросил я.
- Конечно, нет! Я был лишь изучающим его «фантомом».
- Каков же он? Как выглядит? Вернее, как выглядел 300 лет назад?
- Мне он представляется веселым толстым человеком, которого служебные и семейные заботы не лишили страсти к розыгрышам.
- К розыгрышам?
- Он обожал задавать окружающим самые неожиданные загадки.
- Как принцесса Турандот! - вставил Олег.
- Пожалуй, потруднее. Мне он напоминал современных шахматных композиторов, к которым вы имеете отношение. Я видел одну из ваших книг с повестями и шахматными этюдами. Видимо, шахматы - ваше хобби?
- Отец - международный мастер по шахматным этюдам,- заметил с гордостью Олег.
- Ах вот как? Ну тем более вам будет понятен Ферма. Итак, всякий этюдист составляет по возможности трудный для решения шахматный этюд, не приводя его решения.
- Разумеется.
- Это решение скрыто от поверхностного взгляда. Если оно будет найдено, то доставит большую радость и наслаждение красотой заложенного в этюд замысла.
- - Да, в этом прелесть шахматных этюдов,- подтвердил я.
- Ферма как раз и занимался подобными этюдами, правда, не в шахматах, хотя, видимо, увлекался ими, не оставив, к сожалению, никаких своих шахматных творений, «мансуб», как называли их в древности. Зато в математике…
- Он был выдающимся математиком своего времени.
- Он был гениальным открывателем, поэтом математики, давшим непревзойденные по красоте «математические этюды» и… вместе с тем шутником. Он делал все шутя. Шутя открыл систему координат, которую приписывают ныне Декарту. Шутя исследовал кривые второго порядка, эллипсы, параболы, гиперболы. И показал, что все они - конические сечения. Показал, по существу говоря, что бесконечность конечна, не заявив об этом прямо, но позволив нам с вами осознать это на примере сечения конусов. Конуса надо представить продолжением один другого, с соприкасающимися вершинами. Если пересечь конус плоскостью, перпендикулярной его оси, то в сечении получится круг. Наклоните эту секущую плоскость…
- Получится эллипс,- вставил Олег.
- Поворачивайте постепенно эту плоскость и увидите, как одна из осей эллипса будет удлиняться и удлиняться, пока конец ее не исчезнет.
- Ясно. Это произойдет, когда плоскость станет параллельной образующей конуса,- догадался Олег.
- Эллипс своей замыкающей частью как бы уйдет в бесконечность и превратится…
- В параболу!
- Ферма и дальше продолжал наклонять секущую плоскость конусов и… замыкающая часть сверхудлиненного эллипса вернулась на чертеж с противоположной стороны в виде гиперболы, показав тем, что «бесконечность конечна», что части кривых второго порядка возвращаются, словно вычерчиваются на исполинском, бесконечно большом, но все же реально закругленном шаре, который можно обогнуть сверхдлинным эллипсом, называемом гиперболой.
- И все это триста лет назад записал Ферма?
- Что вы! Ферма никогда или почти никогда (но об этом позже) не раскрывал до конца своих «математических этюдов», как я их называю по аналогии с шахматными. Ведь и вы, как уже сказали, не сообщаете шахматистам решения своих этюдов при их публикации. По существу, так же поступал и Ферма, но с большей, я бы сказал, масштабностью и значимостью. Представление о конечности бесконечной Вселенной - вопрос философский, которым ныне заняты современные мыслители. Но задача эта, о чем мало кто даже подозревает, была поставлена Ферма.
- Вот это человек! Академик! Бессмертный, как говорят во Франции! - восхитился Олег.
- Да, «бессмертный»,- подтвердил Аркадий Николаевич,- но не по результатам выборов с тайным голосованием старцев в мантиях в Париже или по назначению высших властей, а будучи обыкновенным с виду французом Пьером Ферма, где-то служившим, в суде или в парламенте, многодетным, но
- Так вот почему, как правило, доказательства Ферма до нас не дошли! Говорят, лучшим «решателем» его математических загадок был Эйлер? - вспомнил я книгу о теореме Ферма.