Читаем Фейнмановские лекции по физике. 5. Электричество и магнетизм полностью

где, как всегда, er обозначает единичный вектор в радиаль­ном направлении. Этот результат говорит нам, что h пропорцио­нален W и меняется обратно квадрату расстояния от источника.

Только что полученный результат применим к потоку те­пла вблизи точечного источника тепла. Теперь попытаемся найти уравнения, которые справедливы для теплового потока самого общего вида (придерживаясь единственного условия, что количество тепла должно сохраняться). Нас будет интере­совать только то, что происходит в местах вне каких-либо ис­точников или поглотителей тепла.

Дифференциальное уравнение распространения тепла было получено в гл. 2. В соответствии с уравнением (2.44),

(3.25)

(Помните, что это соотношение приближенное, но для некоторых веществ вроде металлов выдерживается неплохо.) Применимо оно, конечно, только в тех частях тела, где нет ни выделения, ни поглощения тепла. Выше мы вывели другое соотношение (3.21), которое выполняется тогда, когда количество тепла сохраняется. Если мы это уравнение скомбинируем с (3.25), то получим


или

(3.26)

если c — величина постоянная. Напоминаю, что q — это количество тепла в единичном объеме, а С·С = С2 — лапласиан, т. е. оператор


Если мы теперь сделаем еще одно допущение, сразу воз­никнет одно очень интересное уравнение. Допустим, что тем­пература материала пропорциональна содержанию тепла в еди­нице объема, т. е. что у материала есть определенная удельная теплоемкость. Когда это допущение верно (а так бывает часто), мы можем писать


или


(3.27)

Скорость изменения количества тепла пропорциональна ско­рости изменения температуры. Коэффициент пропорциональ­ности cvздесь — удельная теплоемкость на единицу объема материала. Подставляя (3.27) в (3.26), получаем

(3.28)

Мы обнаружили, что быстрота изменения со временем темпера­туры Т в каждой точке пропорциональна лапласиану от Т, т. е. вторым производным от пространственного распределения тем­ператур. Мы имеем дифференциальное уравнение — в перемен­ных х, у, z и t — для температуры Т.

Дифференциальное уравнение (3.28) называется уравнением диффузии тепла, или уравнением теплопроводности. Часто его пишут в виде


(3.29)

где D — постоянная. Она равна x/cv.

Уравнение диффузии появляется во многих физических задачах: о диффузии газов, диффузии нейтронов и других. Мы уже обсуждали физику некоторых таких явлений в вып. 4, гл. 43. Теперь перед вами полное уравнение, описывающее диффузию в самом общем виде. Немного позже мы зай­мемся решением уравнения диффузии, чтобы посмотреть, как распределяется температура в некоторых случаях. А сейчас вернемся к рассмотрению других теорем о векторных полях.

§ 5. Циркуляция векторного поля

Мы хотим теперь рассмотреть ротор поля примерно так же, как рассматривали дивергенцию. Мы вывели теорему Гаусса, вычисляя интеграл по поверхности, хотя с самого начала отнюдь не было ясно, что мы будем иметь дело с дивергенцией. Откуда же можно было знать, что для ее получения надо интегрировать по поверхности? Этот результат вовсе не был очевиден. И столь же неоправданно мы сейчас вычислим другую характе­ристику поля и покажем, что она связана с ротором. На этот раз мы подсчитаем так называемую циркуляцию векторного поля. Если С — произвольное векторное поле, мы возьмем его составляющую вдоль кривой линии и проинтегрируем эту составляющую по замкнутому контуру. Интеграл называется циркуляцией векторного поля по контуру. Мы уже раньше в этой главе рассматривали криволинейный интеграл от Сy. Сейчас мы то же самое проделываем с произвольным векторным полем С.


Пусть Г — произвольный замкнутый контур в пространстве (воображаемый, разумеется). Пример мы видим на фиг. 3.7. Криволинейный интеграл от касательной составляющей С по контуру записывается в виде

(3.30)

Фиг. 3.7. Циркуляция вектора С но кривой Г есть криволиней­ный интеграл от Сt (касатель­ной составляющей С).


Фиг. 3.8. Циркуляция по всему контуру есть сумма циркуляции по двум контурам: Г1aab и Г2ьaЬ.

Заметьте, что интеграл берется по всему замкнутому пути, а не от одной точки до другой, как это делалось раньше. Кру­жочек на знаке интеграла должен нам напоминать об этом. Такой интеграл называется циркуляцией векторного поля по кривой Г. Название связано с тем, что первоначально так рас­считывали циркуляцию жидкости. Но название это, как и по­ток, было распространено на любые поля, даже такие, в которых «циркулировать» нечему.

Перейти на страницу:

Похожие книги

Держи марку!
Держи марку!

«Занимательный факт об ангелах состоит в том, что иногда, очень редко, когда человек оступился и так запутался, что превратил свою жизнь в полный бардак и смерть кажется единственным разумным выходом, в такую минуту к нему приходит или, лучше сказать, ему является ангел и предлагает вернуться в ту точку, откуда все пошло не так, и на сей раз сделать все правильно».Именно этими словами встретила Мокрица фон Липвига его новая жизнь. До этого были воровство, мошенничество (в разных размерах) и, как апофеоз, – смерть через повешение.Не то чтобы Мокрицу не нравилась новая жизнь – он привык находить выход из любой ситуации и из любого города, даже такого, как Анк-Морпорк. Ему скорее пришлась не по душе должность Главного Почтмейстера. Мокриц фон Липвиг – приличный мошенник, в конце концов, и слово «работа» – точно не про него! Но разве есть выбор у человека, чьим персональным ангелом становится сам патриций Витинари?Книга также выходила под названием «Опочтарение» в переводе Романа Кутузова

Терри Пратчетт

Фантастика / Фэнтези / Юмористическое фэнтези / Прочая старинная литература / Древние книги