Читаем Фейнмановские лекции по физике. 5. Электричество и магнетизм полностью

Если зарядов больше двух (а именно такие случаи наи­более интересны), то закон Кулона нужно дополнить другим существующим в природе фактом: сила, действующая на заряд, есть векторная сумма кулоновских сил, действующих со сто­роны всех прочих зарядов. Этот экспериментальный факт на­зывается «принципом наложения», или «принципом суперпозиции». Это и есть все, что имеется в электростатике. Если доба­вить к закону Кулона принцип наложения, то больше ничего в ней не останется. Точно к таким же выводам, ни больше, ни меньше, приведут уравнения электростатики, уравнения (4.5) и (4.6).



Применяя закон Кулона, удобно ввести понятие об электри­ческом поле. Мы говорим, что поле Е(1) — это сила, действую­щая со стороны прочих зарядов на единицу заряда q1 . Деля (4.9) на q1 ,мы получаем для действия всех зарядов, кроме q1,

(4.11)

Кроме того, мы считаем, что Е(1) описывает нечто, существую­щее в точке (1), даже если в ней нет заряда q1(в предположении, что все прочие заряды сохранили свои позиции). Мы говорим: Е(1) — это электрическое поле в точке (1).

Электрическое поле Е — это вектор, так что в (4.11) на са­мом деле написаны три уравнения, по одному для каждой ком­поненты. Расписывая x-компоненту в явном виде, получаем

(4.12)

и точно так же для остальных компонент.

Если зарядов много, то поле Е в любой точке (1) равно сумме вкладов от всех зарядов. Каждый член в сумме будет выглядеть как (4.11) или (4.12). Пусть qjвеличина j-го заряда, а г1j— смещение qjот точки (1); тогда мы напишем


(4.13)


Фиг. 4.1. В точке (1) электрическое поле Е от некоторо­го распределения зарядов полу­чается из интеграла по рас­пределению.

Точка (I) может находится также внутри распределения.

что означает, конечно,


и т. д.

Часто бывает удобно игнорировать тот факт, что заряды всегда существуют в виде отдельных кусочков, таких, как элект­роны или протоны, а считать, что они размазаны сплошным пятном, или, как говорят, описываются «распределением». До тех пор пока нам все равно, что происходит в малых масшта­бах, такое описание вполне законно. Распределение заряда описывается «плотностью заряда» r (х, у, z). Если количество заряда в небольшом объеме DV2 близ точки (2) есть Dq2, то r определяется равенством


(4.15)

Пользуясь теперь законом Кулона при непрерывном рас­пределении заряда, мы заменяем в уравнениях (4.13) или (4.14) суммы интегралами по всему объему, содержащему заряды. Получается

(4.16)

Некоторые предпочитают писать


где r12 — вектор смещения от (2) к (1) (фиг. 4.1). Интеграл для Е тогда запишется в виде

(4.17)

Если мы хотим действительно провести интегрирование до конца, то обычно приходится интегралы расписывать подробнее. Для x-компоненты уравнений (4.16) или (4.17) получается


Мы не собираемся вычислять что-либо по этой формуле. Написали мы ее здесь только для того, чтобы подчеркнуть, что мы полностью решили те электростатические задачи, в которых известно расположение всех зарядов.

Дано: Заряды.

Определить: Поля.

Решение: Возьми этот интеграл.

Так что по существу все сделано; остается только проделать сложные интегрирования по трем переменным. Эта работа в са­мый раз для счетной машины!

Пользуясь этими интегралами, мы можем найти поле за­ряженной плоскости, заряженной линии, заряженной сферы и любого выбранного распределения. Хотя мы сейчас начнем чер­тить силовые линии, говорить о потенциалах и вычислять ди­вергенции, важно понимать, что ответ на все решаемые задачи в принципе уже готов. Просто порой бывает легче взять интег­рал, придумав фокус, чем проделывать все выкладки чест­но. Но чтобы догадываться, нужно научиться разным ухищ­рениям. Быть может, лучше было бы вычислять интегралы не­посредственно, а не тратить силы на остроумные способы реше­ния да демонстрировать свою сообразительность. Но все-таки мы пойдем по пути развития сообразительности. Переходим, таким образом, к обсуждению некоторых других особенностей электрического поля.

§ 3. Электрический потенциал


Для начала усвоим понятие электрического потенциала, связанное с работой переноса заряда из одной точки в другую. Пусть имеется какое-то распределение зарядов. Оно создает электрическое поле. Спрашивается, какую работу надо затра­тить, чтобы перенести небольшой заряд из одной точки в другую? Работа, произведенная против действия электрических сил при переносе заряда по некоторому пути, равна минус компоненте электрической силы в направлении движения, проинтегрирован­ной по этому пути. Если заряд переносится от точки а к точке b, то


Фиг. 4.2. Работа переноса заряда от а к b равна минус интегралу от F·ds no выбранному пути.

где F — электрическая сила, действующая на заряд в каждой точке, a ds — дифференциал вектора перемещения вдоль траек­тории (фиг. 4.2).

Перейти на страницу:

Похожие книги

Держи марку!
Держи марку!

«Занимательный факт об ангелах состоит в том, что иногда, очень редко, когда человек оступился и так запутался, что превратил свою жизнь в полный бардак и смерть кажется единственным разумным выходом, в такую минуту к нему приходит или, лучше сказать, ему является ангел и предлагает вернуться в ту точку, откуда все пошло не так, и на сей раз сделать все правильно».Именно этими словами встретила Мокрица фон Липвига его новая жизнь. До этого были воровство, мошенничество (в разных размерах) и, как апофеоз, – смерть через повешение.Не то чтобы Мокрицу не нравилась новая жизнь – он привык находить выход из любой ситуации и из любого города, даже такого, как Анк-Морпорк. Ему скорее пришлась не по душе должность Главного Почтмейстера. Мокриц фон Липвиг – приличный мошенник, в конце концов, и слово «работа» – точно не про него! Но разве есть выбор у человека, чьим персональным ангелом становится сам патриций Витинари?Книга также выходила под названием «Опочтарение» в переводе Романа Кутузова

Терри Пратчетт

Фантастика / Фэнтези / Юмористическое фэнтези / Прочая старинная литература / Древние книги