Читаем Фейнмановские лекции по физике. 8. Квантовая механика I полностью

В этой же главе мы покажем вам, как можно получить коэффициенты преобразований для частиц со спином 1/2. Мы выбрали этот случай потому, что он проще спина 1. Задача состоит в том, чтобы определить коэффициенты Rjiдля частицы, или атомной системы, которая в аппарате Штерна — Герлаха расщепляется на два пучка„ Мы собираемся вывести все коэф­фициенты для преобразования от одного представления к дру­гому путем чистого рассуждения плюс несколько предположе­ний. Какие-то предположения всегда нужны для того, чтобы пользоваться «чистыми» рассуждениями! Хотя наши доказа­тельства будут абстрактными и немного запутанными, резуль­тат, который мы получим, сформулировать легко и понять просто; сам же по себе он будет очень важным. Можете, если угодно, рассматривать это как своего рода культмероприятие. Мы ведь условились уже, что все существенное, выведенное здесь, будет также выводиться по мере надобности в следующих главах другим путем. Так что вы не бойтесь потерять нить нашего изложения квантовой механики, если полностью про­пустите эту главу или изучите ее попозже. Мероприятие «куль­турное» в том смысле, что оно должно показать вам, что прин­ципы квантовой механики не только любопытны, но и настолько глубоки, что, прибавив к ним всего несколько добавочных ги­потез о структуре пространства, мы сможем вывести огромное множество свойств физических систем. Кроме того, важно по­нимать, откуда вытекают различные следствия квантовой ме­ханики. Пока наши законы физики неполны (а так оно и есть на самом деле), всегда интересно выяснить, в каких местах наши теории перестают согласовываться с опытом — там ли, где наша логика самая лучшая, или же там, где она наихудшая. До сих пор оказывалось, что там, где наша логика наиболее абстрактна, там она всегда дает правильные результаты — теория согласуется с опытом. Только тогда, когда мы пытаемся строить конкретные модели внутреннего устройства элементар­ных частиц и их взаимодействий, только тогда мы оказываемся не в состоянии найти теорию, согласную с экспериментом. Та теория, которую мы намерены описать здесь, согласуется с опытом всюду, где ее испытывали; она так же хороша для странных частиц, как и для электронов, протонов и т. д.

Еще одно неприятное (но важное) замечание: коэффициенты Rjiневозможно определить однозначно, потому что в амплиту­дах вероятностей всегда есть какой-то произвол. Если у вас есть ряд каких угодно амплитуд, скажем амплитуд прихода в некоторое место по целому множеству различных путей, и если вы помножите каждую отдельную амплитуду на один и тот же фазовый множитель, скажем на еid, то получится другая сово­купность, которая будет ничуть не хуже первой. Значит, всегда можно произвольно изменить фазу всех амплитуд в любой за­даче, если вы этого захотите.

Допустим, вы вычисляете некоторую вероятность, беря сумму нескольких амплитуд, скажем +В+С+...), и возводя ее модуль в квадрат. Затем кто-то другой вычисляет то же самое, складывая амплитуды (А'+В'+С'+ ...) и возводя их модуль в квадрат. Если все А', В', С' и т. д. отли­чаются от А, В, С и т. д. только множителем еid, то все вероят­ности, получаемые возведением модуля в квадрат, окажутся в точности одинаковыми, потому что тогда (А'+В'+С+...) равно eid+В+С+...). Или допустим, к примеру, что мы считали что-нибудь по уравнению (4.1), но затем внезап­но изменили все фазы определенной базисной системы. Каждую из амплитуд <i|y> тогда пришлось бы умножить на один и тот же множитель еid. Точно так же изменились бы в eidраз и все амплитуды: , но амплитуды i> комплексно сопряжены амплитудам <i|c>; тем самым они приобрели бы множитель е-id . Плюс и минус id в экспонентах уничтожатся, и получится то же выражение, что было и раньше. Стало быть, общее правило таково, что изменение на одну и ту же фазу всех амплитуд по отношению к данной базисной системе или даже простое изменение всех амплитуд в любой задаче на одну и ту же фазу ничего не меняет. Значит, существует некоторая свобода в выборе фаз нашей матрицы преобразования. Мы то и дело будем прибегать к такому произвольному выбору, всегда сле­дуя общепринятым соглашениям.

§ 2. Преобразование к повернутой системе координат

Перейти на страницу:

Похожие книги

Жизнь
Жизнь

В своей вдохновляющей и удивительно честной книге Кит Ричардс вспоминает подробности создания одной из главных групп в истории рока, раскрывает секреты своего гитарного почерка и воссоздает портрет целого поколения. "Жизнь" Кита Ричардса стала абсолютным бестселлером во всем мире, а автор получил за нее литературную премию Норманна Мейлера (2011).Как родилась одна из величайших групп в истории рок-н-ролла? Как появилась песня Satisfaction? Как перенести бремя славы, как не впасть в панику при виде самых красивых женщин в мире и что делать, если твоя машина набита запрещенными препаратами, а на хвосте - копы? В своей книге один из основателей Rolling Stones Кит Ричардс отвечает на эти вопросы, дает советы, как выжить в самых сложных ситуациях, рассказывает историю рока, учит играть на гитаре и очень подробно объясняет, что такое настоящий рок-н-ролл. Ответ прост, рок-н-ролл - это жизнь.

Кит Ричардс

Музыка / Прочая старинная литература / Древние книги