Читаем Феномен науки. Кибернетический подход к эволюции полностью

Как же обстоит дело в опыте с электронами? Вы снова видите, что электрон в одних случаях отклоняется вверх, в других — вниз и в поисках причины пытаетесь проследить за его движением, подсмотреть за ним. Но тут оказывается, что вы не можете подсмотреть за электроном, не влияя на его судьбу самым катастрофическим образом. Чтобы «увидеть» электрон, надо направить на него поток света. Но свет взаимодействует с веществом порциями, квантами, которые подчиняются тому же самому соотношению неопределенностей, что и электроны, и другие частицы. Поэтому с помощью света, а также с помощью любых других средств исследования выйти за пределы соотношения неопределенностей не удается. Пытаясь уточнить координату электронов с помощью фотонов, мы либо сообщаем ему такой большой и неопределенный импульс, который портит весь эксперимент, либо измеряем координату так грубо, что не узнаем о ней ничего нового. Таким образом, явлений A1 и A2, т. е. причин, по которым электрон в одних случаях отклоняется вверх, а в других случаях вниз, не существует в действительности. А утверждение, что «на самом деле» какая-то причина есть, теряет всякий научный смысл.

Итак, существуют явления, у которых причин нет, точнее, существует ряд возможностей, из которых одна осуществляется без всякой причины. Это не значит, что принцип причинности вообще следует отбросить: в том же опыте если отключить электронную пушку, то вспышки на экране вообще исчезнут и причиной их исчезновения будет отключение пушки. Но это значит, что его надо существенно ограничить по сравнению с тем, как он понимался в классической механике и как он до сих пор понимается обыденным сознанием. У некоторых явлений причин нет, их надо принимать просто как нечто данное. Таков уж мир, в котором мы живем.

Второй ответ на вопрос о причинах нашей уверенности в существовании непредсказуемых явлений состоит в том, что с помощью соотношения неопределенностей мы уясняем себе не только массу новых фактов, но и природу того перелома в отношении причинности и предсказуемости, который происходит при вторжении в микромир. Мы видим, что вера в абсолютную причинность проистекала из молчаливого предположения о наличии бесконечно тонких средств исследования, «подсматривания» за объектом. Но, дойдя до элементарных частиц, физики обнаружили, что существует минимальный квант действия, измеряемый постоянной Планка, и это создает порочный круг при попытках детализировать сверх меры описание одной частицы с помощью другой. И абсолютная причинность рухнула, а вместе с ней и детерминизм. С общефилософской точки зрения представляется вполне естественным, что если не существует бесконечной делимости материи, то не существует и бесконечной детальности описания, так что крушение детерминизма представляется более естественным, чем если бы он сохранился.

13.9. «Сумасшедшие» теории и метанаука6

Успехи квантовой механики, о которых мы говорили выше, относятся главным образом к описанию нерелятивистских частиц, т. е. частиц, движущихся со скоростями, много меньшими, чем скорость света, так что эффектами, связанными с теорией относительности (релятивистскими эффектами), можно пренебречь. Именно нерелятивистскую квантовую механику мы имели в виду, когда говорили о ее полноте и логической стройности. Нерелятивистская квантовая механика достаточна для описания явлений атомного уровня, но физика элементарных частиц высоких энергий требует создания теории, совмещающей идеи квантовой механики и теории относительности. До сих пор на этом пути достигнуты лишь частичные успехи; единой и последовательной теории элементарных частиц, объясняющей огромный материал, накопленный экспериментаторами, не существует. Попытки построить новую теорию путем непринципиальных исправлений старой теории не приводят к значительным результатам. Создание удовлетворительной теории элементарных частиц упирается в чрезвычайную своеобразность этой области явлений, происходящих как бы в совсем ином мире и требующих для своего описания совершенно необычных понятий, в самой основе расходящихся с привычной нам понятной схемой.

В конце 50-х годов Гейзенберг предложил новую теорию элементарных частиц, ознакомившись с которой Бор сказал, что она вряд ли окажется верной, потому что она «недостаточно сумасшедшая». Теория действительно не получила признания, а меткое замечание Бора стало известно всем физикам и даже попало в популярную литературу. Словечко «сумасшедшая» естественным образом ассоциировалось с эпитетом «странный», применяемым к миру элементарных частиц. Но означает ли «сумасшедшая» только «странная», «необычная»? Пожалуй, если бы Бор сказал «недостаточно необычная», афоризма не получилось бы. Слово «сумасшедшая» вносит оттенок «шальная», «взявшаяся неизвестно откуда» и блестяще характеризует нынешнюю ситуацию в теории элементарных частиц, когда всеми признается необходимость глубокой перестройки теории, но, как к ней приступить, неизвестно.

Перейти на страницу:

Похожие книги

Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Компьютерные сети. 5-е издание
Компьютерные сети. 5-е издание

Перед вами — очередное, пятое издание самой авторитетной книги по современным сетевым технологиям, написанной признанным экспертом в этой области Эндрю Таненбаумом в соавторстве с профессором Вашингтонского университета Дэвидом Уэзероллом. Первая версия этого классического труда появилась на свет в далеком 1980 году, и с тех пор каждое издание книги неизменно становилось бестселлером и использовалось в качестве базового учебника в ведущих технических вузах. В книге последовательно изложены основные концепции, определяющие современное состояние и тенденции развития компьютерных сетей. Авторы подробнейшим образом объясняют устройство и принципы работы аппаратного и программного обеспечения, рассматривают все аспекты и уровни организации сетей — от физического до уровня прикладных программ. Изложение теоретических принципов дополняется яркими, показательными примерами функционирования Интернета и компьютерных сетей различного типа. Пятое издание полностью переработано с учетом изменений, происшедших в сфере сетевых технологий за последние годы и, в частности, освещает такие аспекты, как беспроводные сети стандарта 802.12 и 802.16, сети 3G, технология RFID, инфраструктура доставки контента CDN, пиринговые сети, потоковое вещание, интернет-телефония и многое другое.

А. Гребенькова , Джеймс Уэзеролл

Технические науки
Металлоискатели
Металлоискатели

Книга предназначена для радиолюбителей, интересующихся вопросами поиска различных металлических предметов с помощью специального оборудования, к которому, в первую очередь, относятся металлоискатели.В соответствующих разделах приведены принципиальные схемы и рисунки печатных плат как простых, так и более сложных конструкций. Даны рекомендации по самостоятельному изготовлению и настройке металлоискателей, а также советы по их практическому применению.Настоящее издание будет полезно не только подготовленным радиолюбителям, но и всем читателям, интересующимся данной темой, поскольку большинство представленных конструкций может изготовить как взрослый, так и школьник, никогда не державший в руках паяльник.

Михаил Васильевич Адаменко

Радиоэлектроника / Технические науки / Образование и наука