Читаем Феномен науки. Кибернетический подход к эволюции полностью

Состояние системы определяется через совокупность состояний всех ее подсистем, т. е. в конечном счете элементарных подсистем. Элементарные подсистемы бывают двух типов: с конечным и бесконечным числом возможных состояний. Подсистемы первого типа называют также подсистемами с дискретными состояниями, второго типа — с непрерывными состояниями. Примером подсистемы с дискретными состояниями может служить колесико арифмометра или счетчика в такси. Нормально это колесико находится в одном из десяти положений, соответствующих десяти цифрам от 0 до 9. Время от времени оно поворачивается и переходит из одного состояния в другое. Этот процесс поворота нас мало интересует. Правильная работа системы (арифмометра, счетчика) зависит только от того, как связаны между собой «нормальные» положения колесиков, а как происходит переход из одного положения (состояния) в другое — несущественно. Поэтому мы и можем рассматривать арифмометр как систему, элементарные подсистемы которой могут находиться только в дискретных состояниях. Современная быстродействующая цифровая вычислительная машина также состоит из подсистем (триггерных схем) с дискретными состояниями. Все, что мы знаем в настоящее время о нервной системе животных и человека, указывает на то, что решающую роль в ее работе играет взаимодействие подсистем (нейронов) с дискретными состояниями.

С другой стороны, человек, катящийся на велосипеде, или аналогичная вычислительная машина дают нам примеры систем, которые описываются как состоящие из подсистем с непрерывными состояниями. В случае велосипедиста таковыми являются все движущиеся друг относительно друга части велосипеда и человеческого тела: колеса, педали, руль, ноги, руки и т. д. Их состояния — это их положения в пространстве, описывающиеся координатами (числами), которые могут принимать непрерывные множества значений.

Если система состоит исключительно из подсистем с дискретными состояниями, то и сама она может находиться лишь в конечном числе состояний, т. е. является системой с дискретными состояниями. Такие системы мы будем называть просто дискретными системами, а системы с непрерывным множеством состояний — непрерывными. Дискретные системы во многих отношениях проще для анализа, чем непрерывные. В частности, пересчет числа возможных состояний системы, который играет важную роль в кибернетике, требует в дискретном случае лишь знания элементарной арифметики. Пусть дискретная система A состоит из двух подсистем a1 и a2, причем подсистема a1 может иметь n2, а подсистема a2n2 возможных состояний. Допуская, что каждое состояние системы a1 может сочетаться с каждым состоянием системы a2, мы находим, что число N возможных состояний системы A есть n1n2. Если система A состоит из m подсистем ai, где i = 1, 2, ..., m, то

N = n1n2...nm.

В дальнейшем мы будем рассматривать только дискретные системы. Кроме того прагматического соображения, что они принципиально проще, чем непрерывные системы, существует еще два довода в пользу целесообразности такого ограничения.

Во-первых, все непрерывные системы можно, в принципе, рассматривать как дискретные системы с чрезвычайно большим числом состояний. В свете тех знаний, которые дала нам квантовая физика, такой подход даже следует рассматривать как теоретически более правильный. Причина, по которой непрерывные системы все же не исчезают из кибернетики, — это наличие весьма совершенного аппарата — математического анализа и, в первую очередь, дифференциальных уравнений для рассмотрения таких систем.

Во-вторых, самые сложные кибернетические системы, как возникшие естественным путем, так и созданные руками человека, неизменно оказываются дискретными. Особенно наглядно это видно на примере животных. Относительно простые биохимические механизмы, регулирующие температуру тела, содержание в крови различных веществ и т.п., являются непрерывными, но нервная система устроена по дискретному принципу.

1.5. Надежность дискретных систем

Почему же, когда необходимо выполнять сложные функции, дискретные системы оказываются предпочтительнее, чем непрерывные? Потому что они отличаются более высокой надежностью. В кибернетическом устройстве, основанном на принципе дискретных состояний, каждая элементарная подсистема может находиться лишь в небольшом числе возможных состояний, поэтому она, как правило, игнорирует малые отклонения от нормы различных физических параметров системы, восстанавливая «в первозданной чистоте» одно из своих допустимых состояний. В то же время в непрерывной системе малые возмущения непрерывно накапливаются и, если система слишком сложна, она перестает правильно работать. Конечно, и в дискретной системе всегда существует возможность сбоя, ибо небольшие изменения физических параметров все-таки приводят к конечной вероятности перехода подсистемы в «неправильное» состояние. И все-таки преимущество, бесспорно, на стороне дискретных систем. Покажем это на следующем простом примере.

Перейти на страницу:

Похожие книги

Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Компьютерные сети. 5-е издание
Компьютерные сети. 5-е издание

Перед вами — очередное, пятое издание самой авторитетной книги по современным сетевым технологиям, написанной признанным экспертом в этой области Эндрю Таненбаумом в соавторстве с профессором Вашингтонского университета Дэвидом Уэзероллом. Первая версия этого классического труда появилась на свет в далеком 1980 году, и с тех пор каждое издание книги неизменно становилось бестселлером и использовалось в качестве базового учебника в ведущих технических вузах. В книге последовательно изложены основные концепции, определяющие современное состояние и тенденции развития компьютерных сетей. Авторы подробнейшим образом объясняют устройство и принципы работы аппаратного и программного обеспечения, рассматривают все аспекты и уровни организации сетей — от физического до уровня прикладных программ. Изложение теоретических принципов дополняется яркими, показательными примерами функционирования Интернета и компьютерных сетей различного типа. Пятое издание полностью переработано с учетом изменений, происшедших в сфере сетевых технологий за последние годы и, в частности, освещает такие аспекты, как беспроводные сети стандарта 802.12 и 802.16, сети 3G, технология RFID, инфраструктура доставки контента CDN, пиринговые сети, потоковое вещание, интернет-телефония и многое другое.

А. Гребенькова , Джеймс Уэзеролл

Технические науки
Металлоискатели
Металлоискатели

Книга предназначена для радиолюбителей, интересующихся вопросами поиска различных металлических предметов с помощью специального оборудования, к которому, в первую очередь, относятся металлоискатели.В соответствующих разделах приведены принципиальные схемы и рисунки печатных плат как простых, так и более сложных конструкций. Даны рекомендации по самостоятельному изготовлению и настройке металлоискателей, а также советы по их практическому применению.Настоящее издание будет полезно не только подготовленным радиолюбителям, но и всем читателям, интересующимся данной темой, поскольку большинство представленных конструкций может изготовить как взрослый, так и школьник, никогда не державший в руках паяльник.

Михаил Васильевич Адаменко

Радиоэлектроника / Технические науки / Образование и наука