Эйнштейн после разговора с Вигнером и Силардом 2 августа 1939 года написал президенту Рузвельту письмо, в котором рассказывал о прогрессе в изучении цепных ядерных реакций, о возможностях создания бомбы нового типа и просил сформировать комиссию из физиков, которые работали над делением ядра, и из представителей правительства, поскольку в Германии также могли вести работу в этом направлении. И действительно, в Европе Халбан, Жолио и Коварский добились похожих результатов в области деления урана и цепных реакций. Рузвельт создал комиссию, о которой просил Эйнштейн, в октябре 1939 года и пригласил Ферми участвовать в ее работе. Тем временем 1 сентября 1939 года началась Вторая мировая война, и правительство Америки все больше волновал вопрос о том, обладает ли Гитлер атомной бомбой. Ферми получил от Вооруженных сил США дополнительные средства на секретные исследования цепных реакций. Уже летом, одновременно с Силардом, он определил, что вода — плохой замедлитель, так как водород поглощает слишком много термических нейтронов, и начал опыты с графитом. Гонка за атомной бомбой началась.
В то время существовало два основных мнения по поводу цепных реакций деления урана. Бор доказал, что делятся атомы урана-235 (он составляет 1 % от всего природного урана), а не более распространенного урана-238, который имеет тенденцию поглощать большое количество нейтронов и образовывать уран-239. Поэтому Бор утверждал, что в случае возникновения цепной реакции надо разделять большое количество изотопов урана-235, или, как мы сказали бы сегодня, обогатить уран. Ферми же, напротив, думал, что с хорошим замедлителем и термическими нейтронами можно вызвать цепную реакцию с природным ураном и даже чуть меньше 0,7 % урана-235.
Даннинг, научный руководитель Андерсона, разделял мнение Бора. Он поручил Альфреду Ниру, специалисту по делению изотопов, работу над проблемой обогащения урана. Именно Нир первым определил соотношение изотопов урана- 235 к урану-238 (он нашел хорошее приблизительное значение 1 /139). Ферми видел, что можно пойти по любому из этих двух путей, но предполагал, что обогащение урана вызовет больше трудностей, чем продолжение уже начатой работы. Однако ему пришлось оставить свои исследования, особенно после статьи в The New York Times, опубликованной по итогам конференции Американского физического общества, в которой сравнивались научные подходы в области изучения цепных реакций.
В 1934 году Юкава заявил о существовании мезотрона, частицы — переносчика значительной ядерной силы, держащей ядра вместе. Он назвал эту частицу, отталкиваясь от греческого слова mesos («средний»), поскольку ее масса была средней между массой протона и электрона. Впоследствии Гейзенберг, как сын преподавателя греческого языка, исправил этот вариант, и сегодня семья бозонов, существование которой было предсказано Юкавой, известна как мезоны. Под влиянием открытия Юкавы Карл Дэвид Андерсон и Сет Неддермейер назвали новую частицу, выявленную в космической радиации, мезотроном (впоследствии она оказалась новым лептоном — мюоном). Мюон ведет себя как фермион, а его масса примерно в 200 раз превышает массу электрона и очень близка к мезотрону Юкавы. Свойства этой частицы поразили научное сообщество.