Читаем Feynmann 1 полностью

Но химических элементов ведь тоже было множество, и внезапно между ними удалось увидеть связь, выраженную периодической таблицей Менделеева. Скажем, калий и натрий — вещества, близкие по химическим свойствам,— в таблице попали в один столбец. Так вот, попробовали соорудить таблицу типа таблицы Менделеева и для новых частиц. Одна подобная таблица была предложена независимо Гелл-Манном в США и Нишиджимой в Японии. Основа их классификации — новое число, на­подобие электрического заряда. Оно присваивается каждой частице и называется ее «странностью» S. Число это не меняется (так же как электрический заряд) в реакциях, производимых ядерными силами.

В табл. 2.2 приведены новые частицы. Мы не будем пока под­робно говорить о них. Но из таблицы по крайней мере видно, как мало мы еще знаем. Под символом каждой частицы стоит ее масса, выраженная в определенных единицах, называемых мегаэлектронвольт, или Мэв (1 Мэв— это 1,782·10-27 г). Не будем входить в исторические причины, заставившие ввести эту единицу. Частицы помассивнее стоят в таблице повыше. У (p —938,3; n939,6). В одной колонке стоят частицы оди­накового электрического заряда, нейтральные — посерединке, положительные — направо, отрицательные — налево.

Частицы подчеркнуты сплошной линией, «резонансы» — штрихами. Некоторых частиц в таблице нет совсем: нет фотона и гравитона, очень важных частиц с нулевыми массой и зарядом (они не попадают в барион-мезон-лептонную схему классифи­кации), нет и кое-каких новейших резонансов (j, f, g и др.). Античастицы мезонов в таблице приводятся, а для античастиц лептонов и барионов надо было бы составить новую таблицу, сходную с этой, но только зеркально отраженную относитель­но нулевой колонки. Хотя все частицы, кроме электрона, ней­трино, фотона, гравитона и протона, неустойчивы, продукты их распада написаны только для резонансов. Странность леп­тонов тоже не написана, так как это понятие к ним неприме­нимо — они не взаимодействуют сильно с ядрами.

Таблица 2.2 · ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ

Частицы, стоящие вместе с нейтроном и протоном, называ­ют барионами. Это «лямбда» с массой 1115,4 Мэв и три другие—«сигмы», называемые сигма-минус, сигма-нуль, сигма-плюс, с почти одинаковыми массами. Группы частиц почти одинаковой массы (отличие на 1—2%) называются мультиплетами. У всех частиц в мультиплете странность одинакова. Первый мультиплет — это пара (дублет) протон — нейтрон, потом идет синглет (одиночка) лямбда, потом — триплет (тройка) сигм, дублет кси и синглет омега-минус. Начиная с 1961 г., начали открывать новые тяжелые частицы. Но частицы ли, они? Живут они так мало (распадаются, едва возникнув, на Л и p), что не­известно, назвать ли их новыми частицами или считать «резо­нансным» взаимодействием между Л и p при некоторой фикси­рованной энергии.

Для ядерных взаимодействий, кроме барионов, необходи­мы другие частицы — мезоны. Это, во-первых, три разновид­ности пионов (плюс, нуль и минус), образующие новый трип­лет. Найдены и новые частицы — .К-мезоны (это дублет К+ и К0). У каждой частицы бывает античастица, если только частица не оказывается своей собственной античастицей, скажем p+ и p-— античастицы друг друга, а p0— сам себе античастица. Античастицы и К- с К+ и К0 с К0'. Кроме того, после 1961 г. мы начали открывать новые мезоны, или вроде-мезоны, распа­дающиеся почти мгновенно. Одна такая диковинка называется омега, w, ее масса 783, она превращается в три пиона; есть и другое образование, из которого получается пара пионов.

Подобно тому как из очень удачной таблицы Менделеева выпали некоторые редкие земли, точно так же из нашей таб­лицы выпадают некоторые частицы. Это те частицы, которые с ядрами сильно не взаимодействуют, к ядерному взаимодейст­вию отношения не имеют и между собой сильно тоже не взаимо­действуют (под сильным понимается мощный тип взаимодейст­вия, дающего атомную энергию). Называются эти частицы лептоны; к ним относятся электрон (очень легкая частица с массой 0,51 Мэв) и мюон (с массой в 206 раз больше массы элек­трона). Насколько мы можем судить по всем экспериментам, электрон и мюон различаются только массой. Все свойства мюона, все его взаимодействия ничем не отличаются от свойств электрона — только один тяжелее другого. Почему он тяже­лее, какая ему от этого польза, мы не знаем. Кроме них, есть еще нейтральный лептон — нейтрино, с массой нуль. Более того, сейчас известно, что есть два сорта нейтрино: одни, свя­занные с электронами, а другие — с мюонами.

И наконец, существуют еще две частицы, тоже с ядрами не взаимодействующие. Одну мы знаем уже — это фотон; а если поле тяготения также обладает квантовомеханическими свой­ствами (хотя пока квантовая теория тяготения не разработана), то, возможно, существует и частица гравитон с массой нуль.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука