Есть и другой резон, по которому для биологии и других наук важна именно физика,— это техника эксперимента. Например, нарисованная биохимическая схема не была бы еще до сего времени известна, если бы за нею не стояли большие достижения экспериментальной физики. Дело в том, что для анализа этих невообразимо сложных систем нет лучшего средства, нежели ставить метки на атомах, участвующих в реакции. Если ввести в цикл немного углекислоты с «зеленой меткой» на ней и посмотреть, где метка окажется через 3 сек, потом через 10 сек и т. д., то можно проследить течение всей реакции. Но как сделать «зеленую метку»? При помощи различных изотопов. Напомним, что химические свойства атомов определяются числом электронов, а не массой ядра. Но в атоме углерода, к примеру, может быть либо шесть, либо семь нейтронов наряду с обязательными для углерода шестью протонами. В химическом отношении атомы С12 и С13 не отличаются, но по массе и ядерным свойствам они различны, а значит, и различимы. Используя эти изотопы, можно проследить ход реакции. Еще лучше для этого радиоактивный изотоп С14; с его помощью можно весьма точно проследить за малыми порциями вещества.
Вернемся, однако, к описанию ферментов и белков. Не все белки — ферменты, но все ферменты — белки. Существует множество белков, таких, как белки мышц, структурные белки, скажем, в хрящах, волосах, коже, не являющихся ферментами. И все-таки белки — очень характерная для жизни субстанция; во-первых, это составная часть всех ферментов, а во-вторых, составная часть многих иных живых веществ. Структура белков проста и довольно занятна. Они представляют собой ряды, или цепи, различных аминокислот. Существует два десятка разных аминокислот, и все они могут сочетаться друг с другом, образуя цепи, костяком которых являются группы СО—NH и т. п. Белок — это всего лишь цепочки, сложенные из этих 20 аминокислот. Каждая аминокислота, по всей вероятности, служит для каких-то специальных целей. В некоторых аминокислотах в определенном месте находится атом серы; два атома серы в одном и том же белке образуют связь, т. е. схватывают цепь в двух точках и составляют петлю. В других есть избыточный атом кислорода, придающий им кислотные свойства; характеристики третьих — щелочные. В некоторых бывают большие группы атомов, свисающие с одной стороны и занимающие много места. Одна из аминокислот — пролин — в действительности не амино-, а иминокислота. Эта небольшая разница приводит к тому, что когда в цепи есть пролин, то цепь перекручивается. Если бы вы захотели создать какой-то определенный белок, то вам пришлось бы дать такие указания: здесь поместите серный крюк, затем добавьте чего-нибудь, чтобы заполнить место, теперь привяжите что-нибудь, чтобы цепь перекрутилась, и т. д. Получились бы скрепленные между собой замысловатые цепочки со сложной структурой; все ферменты, по-видимому, устроены именно так. Одним из триумфов современной науки было открытие (в 1960 г.) точного пространственного расположения атомов некоторых белков; в них 56—60 аминокислот подключены друг за другом. Было установлено точное местоположение свыше 1000 атомов (даже до 2000, если считать и водород), входящих в сложную структуру двух белков (один из них — гемоглобин). А одна из печальных сторон этого открытия проявилась в том, что из этой картины ничего увидеть нельзя; мы не понимаем, почему она такая. Именно эту проблему и следует сейчас атаковать.
Есть и другая проблема в биологии: откуда ферменты «знают», кем им стать? От красноглазой мухи рождается опять красноглазая мушка; значит, вся информация о ферментах, создающих красный пигмент, должна перейти к очередной мушке. Передает эту информацию не белок, а вещество в ядре клетки, ДНК (дезоксирибонуклеиновая кислота). Это — та ключевая субстанция, которая передается от одной клетки к другой (половые клетки, например, почти целиком состоят из ДНК) и уносит с собой инструкцию, как делать ферменты. ДНК — это «калька», печатная матрица. На что похожа эта калька, как она должна действовать? Первое — она должна воспроизводить самое себя; второе — она должна быть способна давать задания белку. Что до первого, то можно было бы думать, что это происходит так же, как воспроизведение клеток: клетки подрастают и делятся пополам. Может быть, молекулы ДНК тоже растут и тоже делятся? Нет, это исключено. Ведь атомы наверняка не растут и не делятся! Видимо, для репродукции молекул нужен другой путь, похитрее.
Структура ДНК долго изучалась сперва химически (составные части), затем рентгенографически (пространственная структура). В результате пришли к следующему знаменательному открытию: молекула ДНК — это пара цепочек, навитых друг на друга. Скелет каждой цепочки, хотя и похожий на белковые цепи, но химически отличный от них,— это ряд сахарных и фосфатных групп, как показано на фиг. 3.2.
Фиг. 3.2. Схема ДНК.