Читаем Feynmann 1 полностью

Наконец, образовавшееся после соударения и слипания тело будет ка­заться нам летящим со скоростью v. Отсюда мы делаем вывод, что если тело, летящее со скоростью 2v, ударяется о покоящееся тело той же массы и прилипает к нему, то образовавшееся тело будет двигаться со скоростью v, или (что математически то же самое) тело со скоростью v, ударяясь о покоящееся тело той же массы и прилипая к нему, образует тело, движущееся со скоростью v/2. Заметьте, что если умножить массы тел на их скорости и сложить их, то получим одинаковый результат как до столкновения (mv+0), так и после (2m·v/2). Вот как обстоит дело, если тело, обладающее скоростью v, столкнется с телом, находящимся в покое.

Точно таким же образом можно определить, что произойдет, когда сталкиваются два одинаковых тела, каждое из которых движется с произвольной скоростью.

Пусть одно тело летит со скоростью v1 , а другое — со ско­ростью v2 в том же направлении (v1>v2). Какова будет их ско­рость после соударения? Давайте снова сядем в машину и по­едем, скажем, со скоростью v2. Тогда одно из тел будет казаться нам стоящим на месте, а второе — налетающим на него со ско­ростью v1-v2. Эта ситуация уже знакома нам, и мы знаем, что после соударения скорость нового тела по отношению к машине будет равна 1/2(v1- v2). Что же касается действитель­ной скорости относительно земли, то ее можно найти, прибавив скорость автомобиля: v=1/2 (v1-v2) +v2 или 1/2(v1+v2) (фиг. 10.5).

Фиг. 10.5. Другой случай неуп­ругого соударения равных масс.

Обратите внимание, что снова

mv1+ mv2=m·1/2 (v1+v2). (10.6)

Таким образом, принцип относительности Галилея помогает нам разобраться в любом соударении равных масс. До сих пор мы рассматривали движение в одном измерении, однако на основе его становится ясным многое из того, что будет проис­ходить в более сложных случаях соударения: нужно только пустить автомобиль не вдоль направления движения тел, а под каким-то углом. Принцип остается тем же самым, хотя детали несколько усложняются.

Чтобы экспериментально проверить, действительно ли тело, летящее со скоростью v после столкновения с покоящимся телом той же массы, образует новое тело, летящее со скоростью v/2, проделаем на нашей замечательной установке следующий опыт. Поместим в желоб три тела с одинаковыми массами, два из которых соединены цилиндром со взрывателем, а третье на­ходится вблизи одного из них, хотя и несколько отделено от него. Оно снабжено клейким амортизатором, так что прилипает к тому телу, которое ударяет его. В первое мгновение после взрыва мы имеем два объекта с массами m, движущимися со скоростью v каждое. В последующее мгновение одно из тел сталкивается с третьим и образует новое тело с массой 2т, которое, как мы полагаем, должно двигаться со скоростью v/2. Но как проверить, что скорость его действительно v/2? Для этого мы вначале установим тела таким образом, чтобы расстояния до концов желоба относились как 2:1, так что первое тело, которое продолжает двигаться со скоростью v, должно пролететь за тот же промежуток времени вдвое большее расстояние, чем скрепившиеся два других тела (с учетом, ко­нечно, того малого расстояния А, которое второе тело прошло до столкновения с третьим). Если мы правы, то массы m и 2m должны достичь концов желоба одновременно; так оно и про­исходит на самом деле (фиг. 10.6).

Фиг. 10.6. Экспериментальная проверка того факта, что масса т, ударяя со скоростью v массу m, образует тело с массой 2m и скоростью v/2.

Следующая проблема, которую мы должны решить: что получится, если тела имеют разные массы. Давайте возьмем массы m и 2m и устроим между ними взрыв. Что произойдет тогда? С какой скоростью полетит масса 2т, если масса m летит со скоростью v? Фактически нам нужно повторить только что проделанный эксперимент, но с нулевым зазором между вторым и третьим телом. Разумеется, что при этом мы получим тот же результат — скорости тел с массами m и 2m должны быть соответственно равны -v и v/2. Итак, при разлете тел с массами m и 2m получается тот же результат, что и при симметричном разлете двух тел с массами m с последующим неупругим соударением одного из этих тел с третьим, масса которого тоже равна m. Более того, отразившись от концов, каждое из этих тел будет лететь с почти той же скоростью, но, конечно, в об­ратном направлении, и после неупругого соударения они оста­навливаются.

Перейдем теперь к следующему вопросу. Что произойдет, если тело с массой m и скоростью v столкнется с покоящимся телом с массой 2m? Воспользовавшись принципом относитель­ности Галилея, можно легко ответить на этот вопрос. Попросту говоря, нам нужно опять садиться в машину, идущую со скоростью -v/2 (фиг. 10.7), и наблюдать за только что описанным процессом.

Перейти на страницу:

Похожие книги

Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука