Если расстояние между источниками равно десяти длинам волн (мы выбираем более легкий случай, когда они находятся в фазе), то в западном и восточном направлениях интенсивность максимальна и равна 4. Если же сдвинуться на небольшой угол, разность фаз станет равной 180° и интенсивность обратится в нуль. Более строго: если мы проведем прямые от каждого осциллятора до точки наблюдения и вычислим разность расстояний до осцилляторов D, причем D окажется равным l/2, то оба сигнала будут в противофазе и суммарный эффект равен нулю. Этому направлению отвечает первый нуль на фиг. 29.7 (масштаб на рисунке не выдержан, это, по существу, грубая схема). Это означает, что мы получаем узкий луч в нужном направлении; если же мы чуть сдвигаемся в сторону, интенсивность исчезает. Для практических целей, к сожалению, такие передающие системы имеют существенный недостаток: при некотором угле расстояние D может стать равным l и тогда оба сигнала снова окажутся в фазе! В результате получается картина с чередующимися максимумами и минимумами, точь-в-точь как в гл. 28 для расстояния между осцилляторами, равного 2,5l.
Как избавиться от всех лишних максимумов? Существует довольно интересный способ устранения нежелательных максимумов. Поместим между нашими двумя антеннами целый ряд других (фиг. 29.8). Пусть расстояние между крайними по-прежнему равно 10l, а через каждые 2l поставим по антенне и настроим все антенны на одну фазу. Всего у нас будет, таким образом, шесть антенн, и интенсивность в направлении запад — восток, конечно, сильно возрастет по сравнению с интенсивностью от одной антенны. Поле увеличится в шесть раз, а интенсивность, определяемая квадратом поля,— в тридцать шесть раз. Поблизости от направления запад — восток, как и раньше, возникнет направление с нулевой интенсивностью, а дальше, там, где мы ожидали увидеть высокий максимум, появится всего лишь небольшой «горб». Попробуем разобраться, почему так происходит.
Фиг. 29.8. Устройство из шести дипольных антенн и часть распределения интенсивности его излучения.
Причина появления максимума, казалось бы, по-прежнему существует, поскольку D может равняться длине волны, и осцилляторы 1 и 6, находясь в фазе, взаимно усиливают свои сигналы. Но осцилляторы 3 и 4 оказываются не в фазе с осцилляторами 1 и 6, отличаясь от них по фазе приблизительно на половину длины волны, и вызывают обратный эффект по сравнению с этими осцилляторами. Поэтому интенсивность в данном направлении оказывается малой, хотя и не равной точно нулю. В результате возникает мощный луч в нужном направлении и ряд небольших побочных максимумов. Но в нашем частном примере есть одна добавочная неприятность: поскольку расстояние между соседними диполями равно 2 l, можно найти угол, для которого разность хода s лучей от соседних диполей в точности равна длине волны. Сигналы от соседних осцилляторов будут отличаться на 360°, т. е. снова окажутся в фазе, и в этом направлении мы получим еще один мощный пучок радиоволн! На практике этого эффекта легко избежать, если выбрать расстояние между осцилляторами меньше одной длины волны. Само же возникновение добавочных максимумов при расстоянии между осцилляторами более одной длины волны очень интересно и важно, но не для передачи радиоволн, а для дифракционных решеток.
§ 5. Математическое описание интерференции